A Padding Processor for MPEG-4

Georgi Kuzmanov,

Stamatis Vassiliadis,

Jos van Eijndhoven*

Delft University of Technology - Electrical Engineering Dept.,
P.O. Box 5031, 2600 GA Delft,The Netherlands
*PHILIPS Research - Dept. of Information and Software Technology,
Eindhoven,The Netherlands

Phone:+31-(0)15-27-86249

Abstract— This paper proposes a new processing unit,
which performs the MPEG-4 padding algorithm in real
time. The padding unit has been implemented as a scalable
systolic structure of processing elements. We have written
a synthesizable VHDL model of a single processing element
and have run RTL simulations. A generic array of PE has
been described in VHDL as well, and the functionality of
the unit has been validated by simulations. In order to de-
termine the actual parameters (chip area and speed) of the
padding processor, we have synthesized the VHDL model
for two FPGA families - Xilinx and Altera. Three con-
figurations of the array have been investigated for both
xc4085x1pg559-09 and epfl0k20rc240-4 chips. These con-
figurations consist of 4, 8, and 16 PEs, which have been
evaluated in terms of FPGA area and operating frequency.
The simulation results indicate that the proposed padding
unit can operate in the frequency range 11,4-24,5 MHz and
the real-time requirements can be easily met at a reason-
able hardware cost. Finally, the trade-off between chip-
area and operating speed is discussed and possible config-
uration alternatives are proposed. The proposed padding
engine can be implemented as a part of content-based en-
coders (e.g., MPEG-4 and MPEG-T7), either as a hardwired
unit, or as a reconfigurable engine in a Custom Computing
Machine.

Keywords— MPEG-4, Repetitive Padding, Visual Ob-
ject Plane, Systolic Structure

I. INTRODUCTION

The inclusion of entirely new content-based func-
tionalities in MPEG-4 [5], [6] makes most of the spe-
cialists refer to it as a new standard generation, rather
than the next MPEG version. Essentially, MPEG-4 is
the first standard to deal with content-based coding.
For content-based coding, MPEG-4 uses the concept
of a Video Object Plane (VOP). A VOP is an arbi-
trarily shaped region of a frame, which usually cor-
responds to a semantic object in the visual scene. A
sequence of VOPs in the time domain is referred to
as a Video Object (VO). Each VOP is described by
its shape and tezture. Shape is mainly represented in

E-mail:G.KuzmanovQET.TUDelft.NL

binary format. This format represents the shape as a
bitmap, referred to as binary alpha plane. Each pixel
in this plane takes one of two possible values, which in-
dicate whether the pixel belongs to the object or not.
The binary alpha plane is divided into 16x16-pixel
blocks called Binary Alpha Blocks (BAB). The texture
of a VOP represents its color by macroblocks. Each
macroblock consists of one 16x16 array of luminance
(grayscale) pixels and two 8x8 arrays of chrominance
(color) pixels, which represent the full-color of the cor-
responding 16x16 area of a VOP. Like its predeceding
visual data compression standards, MPEG-4 adopts
motion compensation techniques to exploit temporal
redundancies in the encoded video sequences. Motion
compensation is a process of coding differences (mo-
tion) between frames in a video sequence [9]. These
differences are estimated as a displacement between
pixel areas in the current frame (being encoded) and
a previously encoded frame. The measurement of this
displacement is the motion vector. A process, called
motion estimation, is performed to determine the mo-
tion vectors for each macroblock. This process in-
cludes a search algorithm for best matching between
the block to be encoded and an area of previously en-
coded frame. One important new feature in MPEG-
4 is the padding technique. The purpose of padding
in MPEG-4 is to ensure more accurate block match-
ing in motion compensation algorithms for arbitrary
shaped visual objects. Profiling results, reported in [3],
[4], [10], [11], indicate that padding is a computation-
ally demanding and time consuming process, which re-
stricts the real time operation of the MPEG-4 codecs.

In this paper we propose a scalable padding engine,
capable to perform the padding algorithm in real time.
An operating frequency in the range of 11.4-24.5 MHz
is achieved by implementations, mapped on regular
FPGA chips (Altera and Xilinx). This frequencies
are sufficient for real time processing of macroblocks

in the most demanding profiles (core profile and main
profile) of MPEG-4 [7].

The remainder of the discussion is organized as fol-
lows. Section IT describes the repetitive padding algo-
rithm. In Section I11, the design of the padding unit is
proposed. Section IV discusses the simulation results.
Finally, the conclusions are represented in Section V.

II. THE REPETITIVE PADDING ALGORITHM

For motion compensation/decompensation of VOPs,
MPEG-4 adopts the padding process, which aims
at more accurate block matching. This process de-
fines the full-color values (luminance+chrominance)
for pixels outside the shape of a VOP. In padding,
two types of macroblocks are of interest. Macroblocks,
which lie on the boundary of the VOP are referred to
as boundary blocks. They are processed by the so
called repetitive padding. Exterior macroblocks (com-
pletely outside the VOP) are padded using the ez-
tended padding method. Since repetitive padding is
the most demanding padding algorithm, in this pa-
per we will consider the padding of boundary mac-
roblocks. The repetitive padding algorithm is de-
scribed in [5], [9], but in the literature some modifica-
tions can be met. In all these modifications, however,
the boundary block is separately processed horizon-
tally, per scan-line basis and vertically - per columns.
In [2] the padding algorithm is modified to support
specific instruction set extensions. In the same pa-
per, the horizontal and vertical padding are divided
into two phases each. These two phases consequently
scan the lines/columns into two opposite directions
and perform the padding operations. In this paper we
are using the standard repetitive padding algorithm.
The repetitive padding algorithm, as defined in [5],
[9], has the following steps:

1. Define any pixel outside the object boundary as a
zero pixel. Make a duplicate binary alpha map.

2. Scan each horizontal line of a block. KEach scan
line is possibly composed of zero and nonzero line
segments (according to the shape bits in the binary
alpha map).

(a) In zero segments, between an end point of the
scan line and the end point of a nonzero segment, all
zero pixels are replaced by the pixel value of the end
pixel of nonzero segment.

(b) In zero segments, between the end points of two
different nonzero segments, all zero pixels take the
average value of these two end points.

Nonzero segments are not processed. All shape bits,
corresponding to padded pixels are set in the duplicate

binary alpha map.

3. Scan each vertical line of the block and perform
the identical procedure as described for the horizontal
line. The updated shape information from the dupli-
cate binary alpha map is used.

III. THE PROCESSING UNIT

Since padding is performed over horizontal and ver-
tical pixel lines in identical manner, we propose a scal-
able systolic structure to process pixel blocks per line
basis. Therefore we propose the processing element
(PE), depicted in Figure 1, which is dedicated to pro-
cess each pixel of a block. The same processing ele-
ment is used for luminance and chrominance padding.
The following equations describe the functionality of
the processing element:

(Oly = STy V SA(LIy + [RIly) >> i},

|LO| = S.|I| Vv S.|RI|,

|RO| = S.|I| Vv S.|LI|,

S'=SV LINyV RIy;

where 1 = LIy A Rly,

N represents the width of the processed data (de-
fault N=8),

|LI|,|RI| are left and right input vectors with width
N+1,

|LO|,|RO| are left and right output vectors with
width N+1,

|7|,|O| are data input and output vectors with
width N,

S is the shape (input) bit before processing,

S’ is a mask output bit after processing,

|LI|5 denotes the first N bits of LI (bits 0 to N-1),

and |LI|y represents the N** bit of LI.

IS
LI RI

LI RO LO RO
LO PE RI M M
L
+
o8 o/

Fig. 1. Padding Processing Element

The operation of the PE is as follows. If the input
shape bit S is set (the pixel belongs to the object),
then:

1. The output O takes the value of the input I, i.e.
the pixel keeps its color.

2. The value of the input (pixel) I is propagated to
the left and to the right (via outputs LO5 and ROy)
for further processing. The shape input bit S is propa-
gated by the same multiplexers and occupies the most-
significant bits of LO and RO.

3. The output bit S’ is set, meaning the pixel has been
processed.

If the input shape bit S is zero (the pixel does not
belong to the object and has to be padded), then:

1. The output O takes the average value of the LI
and Rl inputs, i.e. the pixel takes the padded value.
2. The LI value is propagated via RO and the RI -
via LO including color and shape information.

3. The output bit S is set, meaning the pixel has been
processed.

To process a line from a macroblock, we implement
the systolic structure of processing elements, depicted
in Figure 2. For the proper circuit operation, the left-
most and right-most inputs of the structure should
be initialized with zero vectors. This would mean
that there are no pixels to the left and to the right
of the macroblock, which could influence the padding
values. This structure is scalable and can contain an
arbitrary number of processing elements. Since a mac-
roblock consist of one 16x16 luminance and two 8x8
chrominance blocks, it is efficient to implement struc-
tures of 8 or 16 PE. Furthermore, it is possible to
implement several structures, identical to the one in
Figure 2. For example, if we implement eight such
structures, we will be able to process eight lines in
parallel. This is possible, because there is no data
dependency between any two lines. The data depen-
dency is just between the pixels in the same line. Even
more complicated, two dimensional structure can be
implemented, for processing a whole block in parallel.
Implementations, which process more than one line
in a time, however, require higher data throughput
and the implementation of a two-dimensional block
addressing would become necessary [8]. In this paper
we evaluate only the single line/column implementa-
tion of the padding unit, depicted in Figure 2.

The proposed processing unit can be implemented
either as a hardwired accelerator in a dedicated
MPEG-4 codec circuit, or as a reconfigurable accel-
erator in a Custom Computing Machine [12]. In this
paper, we evaluate the implementation of the padding
unit as a reconfigurable processor, mapped onto an
FPGA chip.

Ll - — - - » RO
Lo=—] PE [« PE [« I PE [« PE [«— R
os os os os

Fig. 2. Single Scan Line/Column Padding Structure

IV. SIMULATION RESULTS

To evaluate the proposed structure, we have writ-
ten a synthesizable VHDL model of a single PE and
we have explored the models of configurations with
different numbers of PEs. The evaluation has been
made in terms of chip area and speed. To get realistic
values for these two parameters, we have synthesized
the VHDL models for two popular FPGA families
- Altera and Xilinx, using their dedicated synthesis
and simulation tools. We have not chosen the cut-
ting edge of technology chips for the implementation,
because we have been interested in achieving high per-
formance with lower technological generation (hence
cheaper) FPGAs. The Xilinx xc4085xlpgh59-09 chip
is clocked at a global speed of 96 MHz [13] and the Al-
tera epfl10k20rc240-4 chip - at 100 MHz [1]. Obviously,
these two chips can be run at comparable speeds.
Their chip area is quite different, but since area is
estimated in different units for each of these compa-
nies, a comparison between the implementations on
different chip families has not been performed.

For both chip families we have evaluated structures
of 4, 8 and 16 PEs and speed has been measured in
MHz. Table I suggests the area estimates for the Xil-
inx chip in absolute units - CLBs (Configurable Logic
Blocks) and in percentage of the available gate array
area. For the Altera chip, results are reported in Ta-
ble II in similar manner but the absolute units are
referred to as LCs (Logical Cells).

TABLE I
RESULTS FOR THE XILINX XC4085XLPG559-09 CHIP
PE # CLB’s Speed
total % | MHz
16 419 of 3136 | 14 | 11.4
8 206 of 3136 | 7 18.2
4 45 of 3136 4 24.5

The speed estimations for both FPGA families sug-
gest similar results. The reported numbers indicate
that the padding structure can meet the real-time re-

TABLE II
RESULTS FOR THE ALTERA EPF10K20RC240-4 CHIP

PE # LC’s Speed
total % | MHz

16 1024 of 1152 | 88 | 13.4
8 511 of 1152 | 44 | 19.8

4 254 of 1152 | 22 | 24.8

quirements for a broad range of visual resolutions.
If we consider the implementation wit 16 PEs, the
estimated operating frequencies (11.4 MHz and 13.4
MHz) mean that the padding unit can process up
to 237 500 MB/s (macroblocks per second) or 279
200 MB/s, depending on the FPGA family. For a
QCIF format, a VOP as large as the whole frame has
396 macroblocks. To process such a VOP at a real
time rate of 25 VOP /s we need a processing rate of
9900 MB/s. These numbers indicate that we can pro-
cess at least 24 QCIF VOP/s in the worst case. In
MPEG-4, however, padding is performed over bound-
ary macroblocks, which are statistically 30% of the
whole number of macroblocks in a VOP. This means
that we can process approximately 80 VOP/s in a
QCIF format with the achieved processing speed of
the padding unit. For higher resolutions the number
of the processed VOPs will be lower, but even then a
sufficient number of processed VOPs per second can
be achieved. Since VOPs may vary in size and reso-
lution, the MPEG-4 requirements group has defined
the binding criteria for implementation complexity in
terms of transferred macroblocks per second. For the
core and main MPEG-4 profiles, the required process-
ing speeds are 23860 MB/s and 97200 MB/s for 16 and
32 VOPs respectively [7]. It is obvious that the oper-
ating speed, achievable by the proposed padding unit,
is far over these values as well.

Results in Table I and Table II also indicate that
the actual operating speed grows slower than the area
increase rate. For example, the 4 times smaller im-
plementation (in terms of chip area) is just around a
factor of two slower then the implementation with 16
PEs. This property of the implementation can be used
when either the area or the speed constrains of the
unit are crucial. For the simulated single line/column
repetitive padding processor, there could be several
configuration options. Some of them are:

1. 16PE unit - processes one luminance line/column
and two chrominance per operating cycle.

2. 8PE or 4PE unit - processes a half/quarter of lu-
minance and one/half chrominance line/column.

3. 32, 64, ..., 256PE unit- processing more than
two luminance and more than four chrominance
lines/columns per operating cycle. The extreme con-
figuration would process the whole macroblock.

V. CONCLUSIONS

In this paper we proposed a scalable padding en-
gine, capable to process macroblocks in MPEG-4.
The unit has been modeled in VHDL and its per-
formance and hardware costs have been evaluated for
two FPGA families - Altera and Xilinx. The simula-
tion results indicate that the proposed padding unit
can easily meet the real-time requirements of the core
and main MPEG-4 profiles at a reasonable hardware
cost. An operating frequency of up to 13.4MHz al-
lowed a processing speed of up to 279 200 MB/s to
be achieved by reasonably cheap FPGA chips. The
proposed padding engine can be implemented either
as a hardwired, or as a reconfigurable accelerator of
content-based codecs (e.g., MPEG-4 and MPEG-T7).

VI. ACKNOWLEDGEMENTS

This research is supported by PROGRESS, the em-
bedded systems research program of the Dutch or-
ganization for Scientific Research NWO, the Dutch
Ministry of Economic Affairs, the Technology Founda-
tion STW (project AES.5021) and PHILIPS Research
Laboratories, Eindhoven, The Netherlands.

REFERENCES

[1] ALTERA. Data Book. Altera Corp., 1998.

[2] M. Berekovic, H.-J. Stolberg, M. B. Kulaczewski, P. Pirsh,
H. Moler, H. Runge, J. Kneip, and B. Stabernack. In-
struction set extensions for mpeg-4 video. Journal of VLSI
Signal Processing, 23(1):27-49, October 1999.

[3] H.-C. Chang, L.-G. Chen, M.Y. Hsu, and Y.-C.
Chang. Performance analysis and architecture evaluation
of MPEG-4 video codec system. In IEEE International
Symposium on Circuits and Systems, volume II, pages 449—
452, Geneva, Switzerland, 28-31 May 2000.

[4] H.-C. Chang, Y.-C. Wang, M.-Y. Hsu, and L.-G. Chen.
Efficient algorithms and architectures for MPEG-4 object-
based video coding. In IEEE Workshop on Signal Process-
ing Systems, pages 13-22; 11-13 Oct 2000.

[6] ISO/IEC JTC11/SC29/WG11, N3312. MPEG-4 video ver-
ification model version 16.0.

[6] ISO/IEC JTC11/SC29/WG11 N4030. MPEG-4 overview,
March. 2001.

[7] ISO/IEC JTC11/SC29/WG11 W2502. ISO/IEC 14496-2.
Final Draft International Standard. Part2: Visual, Oct.
1998.

[8] G. Kuzmanov, S. Vassiliadis, and J. van Eijndhoven.
MPEG-4 Addressing and ACQ Function. In Second Work-
shop on Embedded Systems PROGRESS 2001, Veldhoven,
The Netherlands, 18 October 2001.

[9]

[10]

[11]

[12]

[13]

Y. Q. Shi and H. Sun. Image and Video Compression for
Multimedia Engineering. Boca Raton CRC Press, 2000.
H.-J. Stolberg, M. Berekovic, P. Pirsch, H. Runge,
H. Moller, and J. Kneip. The M-PIRE MPEG-4 codec DSP
and its macroblock engine. In IEEFE International Sympo-
stum on Circuits and Systems, volume II, pages 192-195,
Geneva, Switzerland, 28-31 May 2000.

S. Vassiliadis, G. Kuzmanov, and S. Wong. MPEG-4 and
the New Multimedia Architectural Challenges. In 15th
International Conference SAER’2001, St.Konstantin, Bul-
garia, 21-23 Sept. 2001.

S. Vassiliadis, S. Wong, and S. Cotofana. The MOLEN
rm-coded processor. In 11th International Conference on
Field Programmable Logic and Applications (FPL), 2001.
XILINX. DataSource CD-ROM. XILINX, 2000.

