PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 99/36845
GOGF A2 I

(43) International Publication Date: 22 July 1999 (22.07.99)

(21) International Application Number: PCT/IB99/00044 | (81) Designated States: CN, JP, KR, European patent (AT, BE, CH,

(22) International Filing Date: 15 January 1999 (15.01.99)

(30) Priority Data:

09/008,339 Us

16 January 1998 (16.01.98)

(71) Applicant: KONINKLUKE PHILIPS ELECTRONICS N.V.
[NL/NL]; Groenewoudseweg 1, NL-5621 BA Eindhoven
(NL).

(71) Applicant (for SE only): PHILIPS AB [SE/SE]; Kottbygatan 7,
Kista, S—-164 85 Stockholm (SE).

(72) Inventors: SLAVENBURG, Gerrit, A.; Prof. Holstlaan 6,
NL-5656 AA Eindhoven (NL). VAN EIJNDHOVEN, Jos,
T.; Prof. Holstlaan 6, NL-5656 AA Eindhoven (NL).
RATHNAM, Selliah; Prof. Holstlaan 6, NL-5656 AA
Eindhoven (NL).

(74) Agent: DE HAAS, Lars, J.; Prof. Holstlaan 6, NL-5656 AA
Eindhoven (NL).

CY, DE, DK, ES, Fl, FR, GB, GR, IE, IT, LU, MC, NL,
PT, SE).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: VLIW PROCESSOR PROCESSES COMMANDS OF DIFFERENT WIDTHS

(57) Abstract

A VLIW processor has first and second functional units for executing first and second commands in a first instruction word. The
first and second commands comprise a first field and a second field, respectively, of the fields. The processor has a third functional unit for
executing a third command in a second instruction word. The third command comprises both the first and second fields.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CcG
CH
CI
CM
CN
Cu
Cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania ES Spain LS Lesotho SI Slovenia
Armenia FI Finland LT Lithuania SK Slovakia
Austria FR France LU Luxembourg SN Senegal
Australia GA Gabon LV Latvia SZ Swaziland
Azerbaijan GB United Kingdom MC Monaco TD Chad

Bosnia and Herzegovina GE Georgia MD Republic of Moldova TG Togo
Barbados GH Ghana MG Madagascar TJ Tajikistan
Belgium GN Guinea MK The former Yugoslav ™ Turkmenistan
Burkina Faso GR Greece Republic of Macedonia TR Turkey
Bulgaria HU Hungary ML Mali TT Trinidad and Tobago
Benin IE Treland MN Mongolia UA Ukraine
Brazil IL Israel MR Mauritania UG Uganda
Belarus IS Iceland MW Malawi uUs United States of America
Canada IT Ttaly MX Mexico Uz Uzbekistan
Central African Republic JP Japan NE Niger VN Viet Nam
Congo KE Kenya NL Netherlands YU Yugoslavia
Switzerland KG Kyrgyzstan NO Norway w Zimbabwe
Cdte d'Ivoire KP Democratic People’s NZ New Zealand

Cameroon Republic of Korea PL Poland

China KR Republic of Korea PT Portugal

Cuba KZ Kazakstan RO Romania

Czech Republic LC Saint Lucia RU Russian Federation

Germany LI Liechtenstein SD Sudan

Denmark LK Sri Lanka SE Sweden

Estonia LR Liberia SG Singapore

10

15

20

25

WO 99/36845 1 PCT/1B99/00044

VLIW processor processes commands of different widths.

FIELD OF THE INVENTION
The invention relates to a VLIW (Very Large Instruction Word) processor. The

invention also relates to a program for such a processor and to compilation of such a program.

BACKGROUND ART

An example of a VLIW processor is the TM-1000 processor (TriMedia) of
Philips Electronics. This processor is described in, for example, European patent application
No. EP 605 927 (equivalent to US ser No. 07/999,080 now abandoned; PHA 21777). In a
VLIW processor, parallel execution of instructions is obtained by combining multiple basic
machine commands in a single long instruction word. Typically, each such basic command
represents a RISC operation. Per clock cycle, a long instruction word is supplied to a parallel
arrangement of functional units that operate in lock-step. A respective one of the commands is
supplied to a relevant one of the units. Typically, a unit performs pipelined execution.

The TM-1000 processor issues the commands in parallel, each in a respective
issue slot of the very long instruction word issue register. Each issue slot is associated with a
respective group of functional units and with two read ports and one write port to the register
file. A particular command is directed to a specific one among the functional units of the
group that is associated with the particular issue slot. The command typically comprises an
opcode, two source operand definitions and a result operand definition. The source operand
definitions and the result operand definition refer to registers in the register file. During
execution of the command, the source operands are read from the particular issue slot by
supplying fetch signals to the read ports associated with the issue slot in order to fetch the
operands. Typically, the functional unit receives the operands from these read ports, executes
the command according to the opcode and writes back a result into the register file via the
write port associated with the particular issue slot. Alternatively, commands may use fewer
than two operands and/or produce no result for the register file.

A typical program for the VLIW processor is translated into a set of commands
for the functional units. A compile time scheduler distributes these commands over the long

instruction words. The scheduler attempts to minimize the time needed to execute the program

CONFIRMATION COPY

10

15

20

25

30

WO 99/36845 2 PCT/IB99/00044

by optimizing parallelism. The scheduler combines commands into instruction words under
the constraint that the commands assigned to the same instruction can be executed in parallel

and under data dependency constraints.

SUMMARY OF THE INVENTION

It is one of the objects of the invention to provide a VLIW processor whose
architecture enables reducing the number of instruction words required for execution of a
program with respect to conventional VLIW processors.

To this end, the VLIW processor of the invention comprises an instruction issue
port for sequentially supplying first and second very long instruction words. Each respective
one of the words comprises a respective ordered concatenation of fields distributed among a
respective concatenation of commands. The first word comprises a first one of the commands
having a first one of the fields, and a second one of the commands having a second one of the
fields. The second word comprises a third one of the commands having the first and second
ones of the fields. The processor has a first functional unit coupled to the issue port for
processing the first command, and a second functional unit coupled to the issue port for
processing the second command in lock-step with the first unit. The processor also has a third
functional unit coupled to the issue port for processing the third command.

The invention is based on a flexible division of the instruction issue port into
issue slots. This means that it is possible, for example, to use different commands that use
different numbers of fields for operands. Also, different commands may have opcodes of
different sizes. Fields that are associated with specialized resources of the circuitry processing
the commands, here the functional units, can be used in combination with functional units
from different groups, associated with different issue slots. This allows the use of more
complex commands than with in instruction issue port divided into fixed issue slots. There is
no need to reserve more space in the issue slots for handling the most complex command. In a
conventional VLIW processor, such complex commands have to be implemented using
several less complex commands in a sequence of multiple instruction words. Accordingly, the
invention enables execution of programs faster than is possible with a conventional VLIW
processor, because completion of the program requires fewer instruction words.

For example, in a machine such as the TM-1000, an operation which computes
a result from three operands (for example, an averaging operation) would require at least two
successively executed commands and therefore at least two instructions. By providing for a

command with fields for more than two operands, the operation can be executed using one

10

15

20

25

30

WO 99/36845 3 PCT/IB99/00044

command. Moreover, because the fields are assigned flexibly to commands, this can be
realized without reserving more than two fields for operands for all commands.

In an embodiment of the invention, the third command contains all the fields
used for execution of the first and second commands. So, for example, if first and second fixed
size issue slots are used to issue the first and second command respectively, the third
command may use a combination of the first and second issue slots. This simplifies
scheduling.

Different fields in each command, i.e., in each issue slot, may each have a fixed
functionality, such as representing a read address of an operand register, or representing a
write address of a result register or representing an opcode. These different fields will be
associated with fixed parts of the instruction processing circuits, like read ports or opcode
decoders. In this case, the third instruction can use twice the number of operands and/or
produce twice the number of results and/or use a double size opcode. When a respective one of
the issue slots is associated with a respective group of functional units, a functional unit that
executes the third command belongs to both groups at the same time.

The combination of fields used by one command in a VLIW processor
corresponds to an issue slot. Typically the size of a normal issue slot is the same the first and
second command and for normal commands (that use an issue slot that contains an opcode
field, two input register selection fields and a result register selection field). In this case, the
fields used for the third command in this embodiment cover an integer number of normal issue
slots. In VLIW processor programs, issue slots used for commands are a scarce resource: the
higher the number of issue slots used for commands in the program (the sum of the respective
numbers of issue slots used in respective instructions), the slower the program. Therefore, the
number of normal issue slots used for the third command is preferably smaller than the
number of normal issue slots needed for realizing the same function as the third command
with any combination of normal commands. Only in this case does the third command save
issue slots, which are a scarce resource.

Furthermore, implementation of the third command using normal commands
would also mean that intermediate results of these normal commands have to be represented
with an accuracy corresponding to normal register size (e.g. 64 bits or as a vector of 8
elements of 8 bits). Using a third command that combines the effect of a number of normal
commands, intermediate results can be represented with higher accuracy if needed, as is the

case in many signal processing applications (of e.g. image or audio signals).

10

15

20

25

30

WO 99/36845 4 PCT/IB99/00044

Preferably, each instruction is made up of a fixed number of issue slots, where
each issue slot is associated with one or more functional units capable of handling commands.
Different functional units are provided for different groups of commands. The functional units
are associated with issue slots. When an instruction is issued the command from an issue slot
is supplied to the functional units associated with that issue slot. A first and second functional
unit are provided, associated with the issue slots that issue the first and second command
respectively and a third functional unit is provided that is associated with both the first and
second issue slot. So the first and second and command are issued to different functional units.
In case of the third command the third functional unit recognizes that it should use both the
first and second issue slot and the first and second functional unit recognize that they should
not use the first and second issue slot. Activation of the third functional unit is triggered by the
opcode field in one of the first and second issue slots. Preferably, this opcode field controls
what the third functional unit does with the operands referred to in both the first and second
issue slot. It is not so that one of the first and second issue slots may contain only a normal
commard that could be executed on its own, without using the other issue slot, and that the
other issue slot signals a modification of that normal command, such as postprocessing or
preprocessing of the operands, conditional execution etc. This would limit the possible
functions of commands for the third functional unit to only those commands that are available
as normal commands, which can be executed using one issue slot, and modifications of those
commands. Such a limitation would exclude many useful commands for multimedia signal
processing applications.

The invention also relates to a compiler for compiling programs for a VLIW
processor with flexible assignments of fields to instructions and to programs having such a

flexible assignment.

BRIEF DESCRIPTION OF THE DRAWING.
These and other aspects of the invention are illustrated by way of example in
the accompanying drawing, wherein:
Fig.1 is a block diagram of a VLIW processor according to the invention;
Figs. 2a-c are diagrams of instruction word formats;
Fig.3 is a block diagram of a decode circuit for an issue slot;
Fig.4 is a flow diagram for compiling a program; and

Fig.5 an assignment of commands to instruction slots.

10

15

20

25

30

WO 99/36845 5 PCT/IB99/00044

PREFERRED EMBODIMENTS.

Fig. 1 is a diagram of a VLIW processor. The VLIW processor comprises an
instruction word memory system 10, a program counter 11, a decode and launch circuit 12,
functional units 14a-k and a multi-port register file 16. Counter 11 is coupled to an address
input of memory system 10. Memory system 10 has an instruction issue register (not shown)
partitioned in issue slots (also called instruction bus). An issue slot has a number of
functionally parallel paths for routing individual bits of the instruction word currently buffered
in the issue register. An output of the issue register is coupled to decode and launch circuit 12.
Outputs of circuit 12 are coupled to functional units 14a-k and to multiport register file 16.
Read ports and write ports of register file 16 are coupled to functional units 14a-k. Memory
system 10supplies instruction words consecutively to decode and launch circuit 12 under
control of counter 11. Preferably, system 10 uses instruction caching and/or prefetching but
this is not essential to the invention. System 10 may also perform decompress operations on
instruction words stored in a compressed format before outputting them. Decode and launch
circuit 12 receives the instruction words. Circuit 12 treats the functionally parallel paths from
memory system 10 as a collection of fields, each field being associated with one or more of
the paths. A collection of fields makes up a command. A collection of commands forms a
single instruction word.

Fig. 2a shows an instruction word in the first format, wherein the word is
divided into a number of slots 20a-e. Each respective one of slots 20a-¢ corresponds to a
respective command. Each slot has a field for an opcode 22a-¢, two fields for operands 24a-e,
26a-e (expressing a reference to a relevant register in register file 16), and one field for a target
for a result 28a-¢ (expressing a reference to a relevant register in register file 16).

Fig. 2b,c show instruction words in a second format wherein multiple slots have
been combined into "superslots". For example, superslot 29a combines the fields of
conventional slots 20a and 20b, and superslot 29b combines the fields of slots 20c-e. The
superslot format enables implementing commands that use more operands than can be
implemented with a single conventional slot. Generally, each individual field 22a-e, 24a-e,
26a-¢, 28a-¢ has either the same function in superslots 29a and 29b as in a conventional slot
20a-¢ or no function at all. For example, a specific one of fields 24a-e and 26a-¢ define an
operand in the first format as well as in the second format, or it is not used at all. A specific
one of fields 22a-e is used for an opcode in the first format as well as in the second format, or

it is not used at all. A specific one of fields 28a-e is used for a target in the first format as well

10

15

20

25

30

WO 99/36845 6 PCT/IB99/00044

as in the second format or it is not used at all. Alternatively, fields 22a-¢, 24a-¢, 26a-¢, and
28a-¢ in the second format have purposes different from those in the first format

Fig. 3 is a diagram of the VLIW processor, with part of decode and launch
circuit 30, functional units 32a-c, and part of multiport register file 34. The part of decode and
launch circuits 30 comprises an instruction decoder 300 coupled to functional units 32a-c.
Units 32a-c are coupled to read ports 302a, 302b of the register file 34. A result write unit 304
is coupled to a write port 342 of register file 34. The outputs of read ports 302a,b are coupled
to inputs of functional units 32a-c. Outputs of functional units 32a-c are coupled to write port
342. Decode and launch circuit 12 contains circuits like those of Fig.3 for each issue slot.
Decode and launch circuit 12 processes information from fields 22a-e, 24a-¢, 26a-¢, 28a-¢
according to the function of each field. Each of operand fields 24a-e, 26a-¢ is associated with a
respective read port of register file 16. Decode and launch circuit 12 uses the content of fields
24a-¢, 26a-¢ to address the associated read port. Similarly, target fields 28a-e correspond to
write ports of register file 16. Decode and launch circuit 12 uses the content of fields 28a-e to
address the associated write port. Each of opcode fields 22a-¢ is supplied to a respective
instruction decoder 300 in decode and launch circuit 12, whereupon the decoded opcodes are
supplied to selected ones of functional units 14a-k. Typically, decode and launch circuit 12
uses pipelined operation, for example by initiating operand fetching during decoding of the
instruction word. Decoding and fetching of a command from an instruction word is being
performed while a command from a previous instruction word is still being executed, and
while a result of an command from an even earlier instruction word is being written to its
target location. Because the functions of fields 22a-¢, 24a-¢, 26a-e, and 28a-¢ are predefined
and independent of the format, operand fetching can start before instruction decoding has been
completed.

Multiple functional units 14a-k are organized in groups such as in the group in
Fig.3. Each group is associated with a respective issue slot in an instruction word of the first
format. When decode and launch circuit 12 detects an instruction word of the first format,
circuit 12 determines for each slot which of the units of the group associated with that slot, if
any, should execute the command in the slot. That functional unit subsequently receives
control signals to execute the command. Thus, decode and launch circuit 12 will cause the
functional units in a group to start executing one at a time. Typically, functional units of the
same type are present in different groups. For example, each group comprises an ALU
(Arithmetic Logic Unit). This prevents bottlenecks caused by using no more than one

functional unit of each group at a time.

10

15

20

25

30

WO 99/36845 7 PCT/IB99/00044

Some of functional units 14a-c do not belong to one group only. These units are
referred to as super functional units below. Each of super units 14a-c is associated with two or
more specific groups. This means that each of super units 14a-c can use operands from the
read ports to register file 16 that are associated with these specific groups. Also, super units
14a-c can use the write ports to register file 16 that are associated with these specific groups.
Commands for super functional units 14a-c come from instruction words in the second format.
Such commands are located in superslots 29a and 29b. Operand fields 24a,b and 26a,b in the
superslot serve for fetching operands from register file 16 for super units 14a-c. Each of fields
24a,b and 26a,b is associated with the same read port for all instruction words, regardless of
the instruction word’s format. As a result, fetching can start before the format is determined.
Similarly, target fields 28a,b serve to control the write ports to register file 16. Each of these
fields is associated with the same write port for all instruction words, independent of the
format. When decode and launch circuit 12 causes a particular super unit to start executing a
command, circuit 12 will prevent any of the functional units 14d-k from starting to execute a
command in the groups associated with that super unit. Decoded opcode fields 22a,b in
superslots 29a,b correspond to opcode fields 22a,b in the conventional slots 20a,b associated
with those groups, and are used to control only the relevant super unit 14a-c. One may use, for
example, only the opcode of one of these slots to control the super unit, but one may also use a
combine circuit to combine opcodes of two or more of those slots. Thus, a larger number of
different operations can be defined for each of super units 14a-c. Super units 14a-c execute
commands for implementing operations which require more than two operands and/or produce
more than two results. Examples of such operations are:

AV (R1,R2.R3.) Producing the average of three or more operands
R1,R2,R3.,;

ME (R1,R2,R3..) Producing the median of three, five or more operands
R1,R2,R3.,;

SO (R1,R2) Sorting two operands R1 and R2, the bigger operand
being placed in a result register and the smaller in another result register;

TP (R1,R2,R3,R4...) Transposition of matrix with rows R1,R2,R3,R4;

RT (R1,R2,R3) Rotation of a vector with components R1,R2,R3 over a

specified angle.

In a conventional VLIW processor, above operations require execution of

several commands in sequence. The registers in the multiport register file are used in some

10

15

20

25

30

WO 99/36845 8 PCT/IB99/00044

cases to represent a combination of a set of small numbers. For example, if the registers are
64-bit wide, four 16-bit numbers could be represented per register. In this case, each of these
numbers may be operated upon separately. For example, in response to an ADD command a
functional unit may add four pairs of numbers from two registers.

This approach can be used for super units as well. For example, four registers
can represent a 4x4 matrix of 16-bit numbers. Each register contains a respective quadruplet:
R1=(all, al2, al3, al4), R2= (a2l, a22, a23, a24), R3=(a31, a32, a33, a34), R4= (a41, a42,
a43, a44), representing a respective one of the rows of the matrix. A set of components stored
in different registers but in the same position of the corresponding quadruplet represents a
column of the matrix. In a transposition operation, the components of different rows but in the
same position are placed together in a register RESULT1=(all, a21, a31, a41), and
RESULT2=(al2, a22, a32, a42). A super unit for transposing matrices could use two issue
slots and generate two rows of a 4x4 matrix. By providing two commands for such a
functional unit, one for producing the two top rows of the transposed matrix and one for
providing the two bottom rows, transposition is obtained very quickly.

A similar operation is a shuffle operation:

SH R1,R2,R3 -> R4 (, R5)

This operation permutes and/or selects numbers stored in registers R1 and R2
according to permutation defined in register R3 and causes the number to be stored in
permuted order in register R4 and optionally in register RS.

In some cases, one or more operands have standard values. In these cases it is
advantageous to define an additional command, which fits in a single issue slot. In this
additional command, the opcode defines the particular operation and the standard value of one
or more of the operands. The standard value may be defined implicitly. The additional
command contains operand references only to the remaining operands. Such a command can
be used in a single issue slot of an instruction word having either the first or the second format.
When decode and launch circuit 12 encounters such an instruction it supplies the standard
arguments to the super unit itself. Thus, the super unit can receive a command both using one
issue slot and using two or more issue slots. In the former case, the standard values are used
and a greater number of commands can be included in the instruction word.

In the embodiment of Fig.1, each super unit uses all fields of the issue slots
associated with an integer number of groups of functional units. An alternative super unit may
use some, but not all, of the fields of the issue slots. For example, such an alternative unit may

process three operands, two of which stem from the fields of one particular issue slot and a

10

15

20

25

30

WO 99/36845 9 PCT/IB99/00044

third one of which comes from another issue slot. When such an alternative unit is used, the
other fields of the relevant issue slots can be made available for other units that can start
executing in parallel with the alternative super unit. These other functional units may have, for
example, only one operand or no operand at all, or may produce no result. These other units
would use only some of the fields that the alternative unit leaves unused. Also, these other
functional units might be alternative super functional units themselves, using some fields of
the issue slot in addition to fields of another issue slot. However, the use of alternative
functional units imposes complex restrictions on the combinations of units that can receive
commands from a single instruction word. By using all fields of the issue slots, or at least by
not using remaining fields in partly assigned slots, such constraints are avoided. This enables
utilizing a higher degree of parallelism and it makes compilation of the instruction words
much easier.

A compiler generates the instruction words for the VLIW processor. The
compiler describes a program in terms of a number of commands with data dependencies
between the commands. The compiler searches for a way of placing all the commands in a set
of instruction words. The compiler performs a minimization of the number of instruction
words that need to be executed sequentially during execution of the program. Fig. 4 is a
diagram of flow chart for a method of compiling programs. In a first step 40, a set of
operations is received together with a specification of data dependencies between operations.
Subsequently, the compiler starts searching for a way of placing commands for the operations
in a set of instruction words. Second step 42 tests whether commands have been placed for all
the operations received. If so, the compilation process is completed. If not, third step 44 selects
an operation for which no command has yet been placed and for which preceding "source
operations", which produce its operands, have already been placed. Furthermore, the earliest
instruction word is selected from the set of instruction words after the instruction words in
which commands for the source operations have been placed. Fourth step 46 tests whether it is
possible to construct an instruction word which contains the commands already included in
that earliest instruction word, plus a command for the selected operation. Step 46 takes into
account the nature of the commands and the grouping of the functional units. It is tested
whether it is possible to both

- place the commands in different groups; and

- place commands for super functional units so that no other commands

use issue slots for the groups associated with those super functional units.

10

15

WO 99/36845 10 PCT/IB99/00044

If this 1s possible, the selected instruction word is updated and the method
returns to second step 42. If this is not possible, a fifth step 48 is executed in which an
instruction word subsequent to the selected instruction word is selected and fourth step 46 is
repeated.

Fig. 5 1s a diagram to explain fourth step 46 further. On the left, a number of
operations is shown as first nodes 50a-d. On the right, a number of issue slots is shown as
second nodes 52a-¢. The task of the fourth step is to test whether there is a mapping of the first
nodes 50a-d, to the second nodes 52a-e. In this mapping an operation for a super functional
unit 50d maps to two or more issue slots 52d,e. The other first nodes 50a-d correspond to
conventional operations and each maps to a single respective one of second nodes 52a-e. Each
of nodes 52a-e corresponds to an issue slot associated with a group that contains a functional
unit capable of executing the relevant operation. Of course, the flow chart of Fig.4 is but a
simplified example. In general, minimization is performed under constraints of data
dependencies between commands (i.e., if a first command uses as input a result from a second
command, these commands should be placed in different instruction words, the instruction
word that contains the first command following the instruction word that contains the second
command). Moreover, the minimization is performed under the constraint that the functional

units are capable of starting execution of all commands in parallel for each instruction word.

10

15

20

25

WO 99/36845 11 PCT/IB99/00044

CLAIMS:

1. A VLIW processor (fig.1) comprising:

- an instruction issue port for supplying very long instruction words, each
respective one of the words comprising several commands and fields (22a-28a; 22b-28b;
22e-28e) distributed among the commands (20a-20e), wherein:

- a first word (fig.2a) among the very long instruction words comprises a first one
of the commands (20a) covering a first one of the fields (28a), and a second one of the
commands (20b) covering a second one of the fields (28b); and

- a second word (fig.2b) among the very long instruction words comprises a third
one of the commands (29a) covering both the first and second ones of the fields;

- a first functional unit (14d) coupled to the issue port for processing the first
command;

- a second functional unit (14g) coupled to the issue port for processing the
second command simultaneously with the first unit; and

- a third functional unit (14a) coupled to the issue port for processing the third

command.

2. The processor of claim 1, wherein the third command covers all fields of the

first command.

3. The processor of claim 1, wherein:

- the processor has a multiport register file (16);

- the instruction issue port supplying the first field to the register file for fetching
a first operand for use in execution of the first command by the first functional unit;

- the instruction issue port supplying the second field to the register file for
fetching a second operand for use in execution of the second command by the second
functional unit; and

- the instruction issue port supplying the first and second fields to the register file
for fetching multiple operands for use in execution of the third command by the third

functional unit.

10

15

20

25

30

WO 99/36845 12 PCT/IB99/00044

4. The processor of claim 3, wherein:

- the first functional unit writes a first result of executing the first command to a
first address of the register file indicated in a first relevant field of the first command;

- the second unit writes a second result of executing the second command to a
second address of the register file indicated in a second relevant field of the second command;
and

- the third unit writes third and fourth results of executing the third command to
third and fourth addresses, respectively, of the register file indicated said first and second

relevant fields in the third command.

5. The processor of claim 1, arranged for executing an execution stage for the first
and/or second one of the commands, at the same time as another execution stage for the third

command.

6. The processor of claim 5, comprising a fourth functional unit (14b?) capable of
executing the first and third commands, the fourth unit being operative to supply a standard
content instead of information derived from the content of the second field to the functional

unit when the first command is executed.

7. A method of compiling instructions for a VLIW processor (Fig.1), the
processor containing groups of functional units(14a-14k), each instruction word being allowed
to contain at most one respective command for each group of functional units respectively, the
processor also comprising at least one further functional unit (14a-14c) associated with at least
two of the groups, each instruction word which contains a command for the further functional
unit not being allowed to contain commands for any of the functional units in said at least two
of the groups, the method comprising:

- receiving a set of commands that has to be executed by the functional units;

- searching for consistent assignments of commands to instruction words, said
searching comprising eliminating from the search instruction words which contain both a
command for the functional unit and at least one command for any one of the functional units
from said at least two of the groups.

8. A machine readable medium comprising a program for executing a method of

compiling instructions for a VLIW processor, the processor containing groups of functional

10

15

20

25

30

WO 99/36845 13 PCT/1B99/00044

units (14a-14k), each instruction word being allowed to contain at most one respective
command for each group of functional units respectively, the processor also comprising at
least one further functional unit (14a-14c) associated with at least two of the groups, each
instruction word which contains a command for the further functional unit not being allowed
to contain commands for any of the functional units in said at least two of the groups, the
method comprising

- receiving a set of commands that has to be executed by the functional units;

- searching for consistent assignments of commands to instruction words, said
searching comprising eliminating from the search instruction words which contain both a
command for the functional unit and at least one command for any one of the functional units

from said at least two of the groups.

9. A method of executing a computer program on a VLIW processor having an
instruction issue port for issuing successive instruction words in fields (22a-28a; ...22e-28¢) of
the instruction issue port, the method comprising the steps of

- executing a first one of the instruction words (fig.2a) comprising a first and
second command (20a, 20b) containing a first and second field (28a, 28b) from the instruction
issue port, respectively,

- executing a second one of the instructions (fig 2b) containing a third command

(29a) containing both the first and second field.

10. The method of claim 10, wherein a set of fields (22a-28a; 22b-28b) consisting
of all fields used in the first command is contained in the third command, the method

comprising executing the third command using the fields of that set of fields.

11. A machine readable medium comprising a program for a VLIW processor, the
program containing a first instruction word (fig.2a) comprising a first and second command
(20a; 20b) containing a first and second field (28a; 28b) respectively and a second instruction

word (fig2b) containing a third command (29a) containing both the first and second fields.

12. The machine readable medium of claim 12, wherein a set of fields (22a-28a;

22b-28b) consisting of all fields used in the first command is contained in the third command.

WO 99/36845 14 PCT/1B99/00044

13. The machine readable medium of claim 13, wherein a set of fields (22a-28a;
22b-28b) consisting of all fields used in the second command is contained in the third

command.

WO 99/36845 PCT/IB99/00044

1/3

16~

rd
V4

b

14d |

N 14~ NS D \ 14
- AN "N N N

A |

N

N
=
)

NN
=
jab]
N\
—
EaN
Vin
=
o

14e
12"
/}1
101 i
20a) 20b 20c 20d 20e
A\/A\f
FIG.2AH|||I||||||||||||||||||1
22a 22h 22C 22d 22e
243 24b 24c 24d 24e {
26a 26b 26¢ 26d 26e
Z?a Z?b 2?0 2?d Z?e
FIG.2B (T I T T ITITITIITITITITITTIT]
~ 4
298‘\/

WO 99/36845 PCT/1B99/00044

2/3

/L /
=N

| 822 | aop \32¢

/[

WO 99/36845

3/3

Dat.

48

PCT/1B99/00044

	Bibliographic Data
	Claim
	Drawing
	Description
	Abstract

