United States Patent

US006889242B1

(12) (10) Patent No.: US 6,889,242 B1
Sijstermans et al. 5) Date of Patent: May 3, 2005
(549) ROUNDING OPERATIONS IN COMPUTER 5,917,739 A * 6/1999 Wongccceeeeevinrenene 708/445
PROCESSOR 6,007,232 A * 12/1999 Wong 708/445
6,058,410 A * 5/2000 Sharangpani 708/551
(75) Inventors: Frans W. Sijstermans, Los Altos, CA g:%i:g;‘ 2 18@888 }’an t];:ijndho"en et al. 73/21/5‘7‘
. is ,134, ACODS vereereeeeereeiiennens
Egg Jos van Eijndhoven, Waalre 6226715 Bl 52001 Van Der Wolf ct al. 711/133
6,243,728 B1 6/2001 Farooqui et al. 708/209
*
(73) Assignee: Koninklijke Philips Electronics N.V., 6,684,232 Bl 1/2004 Handlogten et al. 708/204
Eindhoven (NL) * cited by examiner
. . s . Primary Examiner—. H. Malzahn
(*) Notice: Sub]ect. to any dlsclalmer,. the term of this (74) Attorney, Agent, or Firm—Kevin Simons
patent is extended or adjusted under 35
U.S.C. 154(b) by 602 days. 67 ABSTRACT
) Various methods for performing rounding operations in a
(21) Appl. No.: 09/895,272 computer processor are described. A machine instruction
(22) Filed: Jun. 29, 2001 sets the rounding mode, which is automatically applied to
, subsequent machine instructions. Using machine instruc-
(51) Int. Cl. .. G06F 7/38 tions to round results according to the Selected rounding
(52) US.ClL oo 708/551; 708/497 mode has several advantages over software-implemented
58) Field of Searchcc..coooonen. 708/551, 497 rounding techniques, such as faster execution and concise
(58) , 497, ding techniq b as f ion and conci
708/445, 209 code. Avariety of rounding modes can be specified. Depend-
ing in part on the specified rounding mode and on the sign
(56) References Cited of the value to be rounded, a rounding term is added to the
value to be rounded. Adding this rounding term ensures that
U.S. PATENT DOCUMENTS the desired result is obtained. The value thus obtained is then
4,953,119 A * 8/1990 Wong etal. 708/513 right-shifted.
5,363,322 A * 11/1994 Gergen et al. 708/620
5,696,709 A * 12/1997 Smith, Sr.cceveeevrennne. 708/551 53 Claims, 16 Drawing Sheets

10\‘

16
o FETCHUNIT [f
| 18
e
DECODER UNIT -
CONTROL UNIT
12 | FUNCTIONAL UNITS
" 14
CONTROL
REGISTER
2 I
| REGISTERFILE
- 20

U.S. Patent May 3, 2005 Sheet 1 of 16 US 6,889,242 B1

10~y
16
o FETCHUNIT
| 18
DECODERUNIT -
CONTROL UNIT
12 | FUNCTIONAL UNITS
" 14
CONTROL
REGISTER
2 |
| REGISTERFILE
- 20

U.S. Patent May 3, 2005 Sheet 2 of 16 US 6,889,242 B1

STARi:> 200
(smas ;

202 y
ADD

TERM TO
OPERAND

204
Ly

SHIFT
RIGHT

Yy

(s1or)
Fig. 2

U.S. Patent

May 3, 2005 Sheet 3 of 16

300

R
Comeer)
302 T

ADD
VECTORS

306 1 ‘

ADD TWO

304y v
. RIGHT-
 SHIFT BY
TWO BITS

L

o

\ STOP)

Fig. 3

US 6,889,242 Bl

U.S. Patent May 3, 2005 Sheet 4 of 16 US 6,889,242 B1

400

START)
402
™

ADD
VECTORE

-

ADD CN=z

406 —

404 -

y

RIGHT-
SHIFT BY
ONE BI~

— X

(" sop)

o

Fig. 4

U.S. Patent May 3, 2005 Sheet 5 of 16 US 6,889,242 B1

500
’/,

START)

PN,

502 \

PERFORM NON-SATURATING FIXED-POINT

FRACTIONAL MULTIPLICATION OF SIGNED
AND UNSIGNED-BYTE VECTOR

ADD ROUNDING TERM

RIGHT-SHIFT BY EIGHT BITS

U.S. Patent May 3, 2005 Sheet 6 of 16 US 6,889,242 B1

- 600
’/‘

,_
(START)
602\ S~

PERFORM NON-SATURATING FIXED-
POINT FRACTIONAL MULTIPLICATION OF
UNSIGNED-BYTE VECTCRS

‘

ADD ROUNDING TERM

l i

RIGHT-SHIFT BY EIGHT BITS

606

-604

U.S. Patent May 3, 2005 Sheet 7 of 16 US 6,889,242 B1

_— 700
(START
PERFORM NON-SATURATING FIXED-PCOINT

FRACTIONAL MULTIPLICATION OF SIGNED
HALF-WORD VECTORS

1 /

702

706

ADD ROUNDING TERM

- 704

RIGHT-SHIFT BY SIXTEEN BITS

— 3
(STOP)

U.S. Patent May 3, 2005 Sheet 8 of 16 US 6,889,242 B1

800
T,
< START)
S

802

PERFORM NON-SATURATING FIXED-POINT

FRACTIONAL MULTIPLICATION OF SIGNED
AND UNSIGNED HALF-WCRD VECTORS

~ 806
/

ADD ROUNDING TERM

‘L — 804

RIGHT-SHIFT BY SIXTEEN BITS

(stop)

Fig. 8

U.S. Patent May 3, 2005 Sheet 9 of 16 US 6,889,242 B1

900

¢
(o

PERFORM NON-SATURATING FIXED-
POINT FRACTIONAL MULTIPLICATION OF
UNSIGNED HALF-WORD VECTORS

J -906

-902

ADD ROUNDING TERM

RIGHT-SHIFT BY SIXTEEN BITS

!

o

Fig. 9

U.S. Patent May 3, 2005 Sheet 10 of 16 US 6,889,242 B1

1000

/
(smarT)

1002
!
PERFORM NON-SATURATING FIXED-
POINT FRACTIONAL MULTIPLICATION OF
SIGNED WORD VECTORS
¢ ~1006

ADD ROUNDING TERM

I /—1 004

RIGHT-SHIFT BY THIRTY-TWO BITS

(STOP

Fig. 10

U.S. Patent May 3, 2005 Sheet 11 of 16 US 6,889,242 B1

1100

'/

< START

1102
PERFORM NON-SATURATING FTXED-
POINT FRACTIONAL MULTIPLICATION OF
SIGNED AND UNSIGNED WORD
VECTORS 1108

ADD ROUNDING TERM

—1104

RIGHT-SHIFT BY THIRTY-TWO BITS

U.S. Patent May 3, 2005 Sheet 12 of 16 US 6,889,242 B1

1200

'/
(srarT

4202
PERFORM NON-SATURATING FIXED-
POINT FRACTIONAL MULTIPLICATION OF
UNSIGNED WORD VECTORS
—1206
‘ 4
ADD ROUNDING TERM
~1204
h
RIGHT-SHIFT BY THIRTY-TWO BITS

ye
(sTOP
N

Fig. 12

U.S. Patent May 3, 2005 Sheet 13 of 16 US 6,889,242 B1

1300

(START) 30
| e

ADD ROUNDING TERM

1302

‘ /

PERFORM ARITHMETIC
RIGHT SHIFT OPERATION
OF SIGNED BYTEVECTOR

v
& STOP >

Fig. 13

U.S. Patent May 3, 2005 Sheet 14 of 16 US 6,889,242 B1

1400

'/

(:STARTﬂé

——I——~“ //,14@1
!

ADD ROUNDING TERM

1402

I Ve

PERFORM LOGICAL RIGHT
SHIFT OPERATION OF

UNSIGNED BYTE VECTOR

'
(: STOP)

—

Fig. 14

U.S. Patent May 3, 2005 Sheet 15 of 16 US 6,889,242 B1

1500

'/

(staRr)
i e

ADD ROUNDING TERM

l /1502

PERFORM ARITHMETIC RIGHT

SHIFT OPERATION OF SIGNED
DOUBLE-WORD VECTOR

‘“_
(Cstor)

Fig. 15

U.S. Patent May 3, 2005

1602

Sheet 16 of 16

1600

PROCESSOR

US 6,889,242 Bl

1604

g} —————————————

MEMORY

Fig. 16

US 6,889,242 B1

1

ROUNDING OPERATIONS IN COMPUTER
PROCESSOR

TECHNICAL FIELD

The invention relates to programmable processors and,
more particularly, to mathematical operations in such pro-
Cessors.

BACKGROUND

In conventional programmable processors, floating point
operations are mathematical operations in which the oper-
ands and the results are represented in fractional form. In
certain situations, however, it is desirable to obtain an
integer result. For example, while the floating point opera-
tion 15/4 yields the result 3.75, it may be preferable under
some circumstances to return a result of 3 or 4. In such cases,
the preferred result can be obtained using a rounding opera-
tion.

Some processors perform such rounding operations by
rounding down in all cases or, alternatively, by rounding up
in all cases. For processors that round down in all cases, for
example, a value of 3.999 rounds to 3, while a value of
-3.999 rounds to —4. By contrast, for processors that always
round up, a value of 3.999 rounds to 4, while a value of
-3.999 rounds to -3. While these results are acceptable for
some applications, other applications, such as those intended
to be compliant with standards, require symmetrical round-
ing. For such applications, for instance, if a value of 3.999
rounds to 3, a value of —=3.999 should round to -3, rather
than -4.

Some approaches for obtaining compliant rounding
results in these situations involve the use of greater degrees
of precision. For example, to obtain 16-bit compliance with
standards, some processors use 32-bit precision. This
approach can produce compliant rounding results, but per-
formance is typically compromised due to the additional
operations involved with the higher degree of precision.

Accordingly, a need continues to exist for an integer
rounding technique that will produce results that comply
with standards, while maintaining efficient processor per-
formance.

SUMMARY

According to various implementations of the invention,
rounding operations are performed by machine instructions
based on a selectable rounding mode. A machine instruction
is used to set the rounding mode, which is automatically
applied to subsequent arithmetic operations. Using machine
instructions to round results according to the selected round-
ing mode has several advantages over software-
implemented rounding techniques, such as improved execu-
tion speed and increased conciseness of code.

A variety of rounding modes are available for selection
using, for example, a three-bit rounding mode field of a
control register. A rounding term is added to a result of a
floating-point operation, depending in part on the selected
rounding mode and on a sign (+ or =) of the result. Adding
the rounding term ensures that the desired rounding opera-
tion can easily be obtained by a right-shift operation regard-
less of the selected rounding mode.

In one embodiment, the invention is directed to a method
in which a first instruction is executed in a programmable
processor to set a rounding mode. A second instruction is
executed within the programmable processor to generate an
integer result rounded according to the rounding mode.

10

15

20

25

30

35

40

45

50

55

60

65

2

In another embodiment, the invention is directed to a
method in which an operation is performed and the result is
rounded according to a selectable rounding mode. A round-
ing term is added to a result of the integer operation to obtain
an intermediate result. The rounding term is determined at
least in part as a function of the rounding mode, a shift
amount, and a sign of the result of the operation. The
intermediate result is then right-shifted by the shift amount.

Other embodiments of the invention include methods for
compiling programs for performing these methods, as well
as computer-readable media and apparatuses for performing
these methods. The above summary of the invention is not
intended to describe every embodiment of the invention. The
details of one or more embodiments of the invention are set
forth in the accompanying drawings and the description
below. Other features, objects, and advantages of the inven-
tion will be apparent from the description and drawings, and
from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating an example pro-
grammable processor configured to perform rounding opera-
tions consistent with the principles of the invention.

FIGS. 215 are flow diagrams illustrating example modes
of operation of the programmable processor methods.

FIG. 16 is a block diagram illustrating the programmable
processor within a computing system.

DETAILED DESCRIPTION

In general, the invention facilitates rounding operations
within a programmable processor in accordance with a
selectable rounding mode. A single machine instruction can
be used to select one of a variety of rounding modes. Some
example rounding modes that can be selected include, but
are not limited to, rounding up (or down) in all cases,
rounding toward (or away from) zero in all cases, and
rounding to the nearest integer. In the latter mode, a rule for
handling a fractional part equal to 0.5, e.g. how to round the
value 3.5, can also be specified as described more fully
below.

Once a rounding mode is set, the programmable processor
uses the mode when executing subsequent machine instruc-
tions that perform arithmetic operations. The mode may
remain in effect until it is changed. Using machine instruc-
tions in this way, rather than software-implemented
rounding, realizes a number of advantages, including faster
execution and more concise code.

In this detailed description, reference is made to the
accompanying drawings that form a part hereof, and in
which are shown by way of illustration specific embodi-
ments in which the invention may be practiced. It is under-
stood that other embodiments can be utilized and structural
changes can be made without departing from the scope of
the invention.

FIG. 1 is a block diagram illustrating a programmable
processor 10 arranged to support rounding operations in a
manner consistent with the principles of the invention. The
description of FIG. 1 is intended to provide a brief, general
description of suitable processor hardware and a suitable
processing environment with which the invention may be
implemented. Although not required, the invention is
described in the general context of instructions being
executed by processor 10.

In accordance with the invention, processor 10 supports
an extensive set of arithmetic operations such as, for

US 6,889,242 B1

3

example, arithmetic operations, including addition,
subtraction, and multiplication; logical operations, such as
logical AND and OR operations; comparisons; and a variety
of multimedia operations. All of these operations are sup-
ported for byte, half word, and word vectors and may be
performed on integer or floating-point operands. In addition,
some operations are also supported for double word vectors.

If a result of an integer operation is not representable, the
bit pattern that is returned is operation-specific, as described
more fully below in connection with the descriptions of
example integer operations. Generally, the returned bit pat-
tern for regular addition and subtraction operations is a wrap
around bit pattern. For DSP-type operations, the returned bit
pattern is typically clipped against the minimum or maxi-
mum representable value. Operations that produce a double
precision result, such as integer multiplication, can return
the least significant half of the double precision result.
Alternatively, the most significant part of the double preci-
sion result can be returned, possibly after rounding.

As shown in FIG. 1, processor 10 includes control unit 12
coupled to one or more functional units 14. Control unit 12
controls the flow of instructions and/or data through func-
tional units 14. For example, during the processing of an
instruction, control unit 12 directs the various components
of processor 10 to fetch and decode the instructions, and to
correctly perform the corresponding operations using, for
example, functional units 14. Additional units such as fetch
unit 16, decode unit 18, or a decompression unit may be
coupled to functional units 14 and controlled by control unit
12. In addition, functional units 14 are also coupled to a
register file 20, which stores both the operands and the
results of operations. Control unit 12 includes control reg-
ister 22, which stores an indicator of the particular rounding
mode to be applied in subsequent arithmetic operations.

In some implementations, the functional units 14 are
pipelined such that operations can be loaded into a first stage
of a pipelined functional unit and processed through subse-
quent stages. A stage processes concurrently with the other
stages. Data passes between the stages in the pipelined
functional units during a cycle of the system. The results of
the operations emerge at the end of the pipelined functional
units in rapid succession. In other implementations, the
functional units 14 are not pipelined.

Though not required, in one mode of operation, the fetch
unit 16 fetches an instruction from an instruction stream.
This instruction is then decoded by decode unit 18, and
delegated to the appropriate functional unit 14 by control
unit 12. The functional unit 14 retrieves the operand or
operands from the register file 20, executes the instruction
according to the rounding mode specified by the control
register 22, and writes the result of the operation into the
register file 20.

The methods and techniques described herein can be
implemented in connection with a variety of different pro-
cessors. For example, the processor 10 can be any of a
variety of processor types, such as a reduced instruction set
computing (RISC) processor, a complex instruction set
computing (CISC) processor, variations of conventional
RISC processors or CISC processors, or a very long instruc-
tion word (VLIW) processor. The VLIW architecture may
include a plurality of instruction slots each having an
associated set of functional units 14, and each slot may be
adapted to execute one operation of a VLIW instruction.
While each slot can have an associated set of functional units
14, only one functional unit 14 in a given slot can be used
at any given time.

10

15

20

25

30

35

40

45

50

55

60

65

4

In some implementations, the VLIW processor allows
issue of five operations in each clock cycle according to a set
of specific issue rules. The issue rules impose issue time
constraints and a result writeback constraint. Issue time
constraints result because each operation implies a need for
a particular type of functional unit. Accordingly, each opera-
tion requires an issue slot that has an instance of the
appropriate functional unit type attached. These functional
units require time to recover after performing an operation,
and during this recovery time, other operations that require
a functional unit that is being recovered cannot be per-
formed. Writeback constraints result because no more than
five results should be simultaneously written to the register
file 20 at any point in time. Any set of operations that meets
the issue time and result writeback constraints constitutes a
legal instruction.

By way of example, some details of the invention will be
described in the context of a VLIW processor. It should be
noted, however, that the invention is not limited in imple-
mentation to any particular type of processor, and any
description of a particular processor type should not be
construed to limit the scope of the invention.

Processor 10 typically includes or is used in conjunction
with some form of processor readable media. By way of
example, and not limitation, processor readable media may
comprise computer storage media and/or communication
media. Computer storage media includes volatile and
nonvolatile, removable and nonremovable media imple-
mented in any method or technology for storage of infor-
mation such as processor-readable instructions, data
structures, program modules, or other data. Computer stor-
age media includes, but is not limited to, random access
memory (RAM), read-only memory (ROM), EEPROM,
flash memory, CD-ROM, digital versatile discs (DVD) or
other optical storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
any other medium that can be used to store the desired
information and that can be accessed by the processor 10.
Communication media typically embodies processor read-
able instructions, data structures, program modules, or other
data in a modulated data signal, such as a carrier wave or
other transport medium and includes any information deliv-
ery media. The term “modulated data signal” means a signal
that has one or more of its characteristics set or changed in
such a manner as to encode information in the signal. By
way of example, and not limitation, communication media
includes wired media, such as a wired network or direct-
wired connection, and wireless media, such as acoustic, RF,
infrared, and other wireless media. Computer readable
media may also include combinations of any of the media
described above.

FIG. 2 depicts an example mode of operation 200 of
processor 10 for performing a shift right operation, accord-
ing to a particular embodiment of the invention. The shift
right operation is typically used to implement integer divi-
sion by some power of two. For example, shifting three bits
to the right has the effect of dividing the integer by eight. The
conventional shift right operation rounds down, i.e., toward
negative infinity. According to the invention, this conven-
tional operation is supported. In addition, however, the user
can select from a variety of alternative rounding modes by
setting an integer rounding mode field of a Program Control
and Status Word (PCSW) register stored, for example, in the
control register 22 of FIG. 1. Assuming the integer rounding
mode field contains three bits, eight distinct integer rounding
modes are selectable. These rounding modes include:

US 6,889,242 B1

-

d
rounding down (toward negative infinity),
rounding up (toward infinity),

rounding to the nearest integer, with 0.5 being rounded

toward negative infinity,

rounding to the nearest integer, with 0.5 being rounded

toward infinity,

rounding to the nearest integer, with 0.5 being rounded

toward zero,

rounding to the nearest integer, with 0.5 being rounded

away from zero,

rounding toward zero, and

rounding away from zero.

It should be noted that, if the first rounding mode is
selected, the shift right operation with rounding is entirely
equivalent to the conventional shift right operation. Depend-
ing on the particular rounding mode, the number s of bits
shifted, and the sign of the shifted operand, a term is added
to the operand to be shifted, as shown at a block 202. Table
1 shows the term that is added in each case, assuming that
s is greater than zero. If s is equal to zero, i.e., if no shifting
is performed, then no term is added to the operand, and no
rounding is applied. The integer rounding mode values listed
in Table 1 below are provided for purposes of illustration
only.

TABLE 1
Integer
rounding Term to be added, Term to be added,
mode value Rounding mode positive operand negative operand
000 To negative infinity 0 0
001 To nearest, half to 2>~ 1 -1 25-1_1
negative infinity
010 To zero 2° -1
011 To nearest, halfto 25~ 1 -1 2°-1
zero
100 To infinity 22 -1 2° -1
101 To nearest, half to 2% - 1 2°-1
positive infinity
110 Away from zero 22 -1 0
111 To nearest, half 2 -1 25-1_1

away from zero

After the term is added (if applicable), the operand is
shifted s bits to the right at a block 204.

As an example, if r10, interpreted as a half-word signed-
integer vector, represents the vector (-4, -3, 3, 4) and the
integer rounding mode value is 011, i.e., round to the nearest
integer, with 0.5 being rounded toward zero, then the result
of shifting right by one bit with rounding is (-2, -1, 1, 2).
This result is obtained by first adding the term vector (1, 1,
0, 0) to r10 as specified by the integer rounding mode value,
resulting in (-3, -2, 3, 4) and then shifting right by one bit,
so as to divide by two with rounding toward negative
infinity.

Similarly, the result of a multiplication operation has
twice as many bits as the operands. Dropping the least
significant half of the bits corresponds to dividing the result
by a power of two. For example, multiplying two eight-bit
operands results in a product having sixteen bits. Dropping
the least significant eight bits corresponds to dividing the
result by 2%, or 64. This operation can also be performed
with any of the integer rounding modes described above in
connection with Table 1.

FIG. 3 illustrates an example mode of operation 300 of the
processor 10 of FIG. 1 for performing a rounded average of

10

15

20

25

30

35

40

45

50

55

60

65

6

four unsigned-byte vectors, according to another embodi-
ment of the invention. This operation takes the syntax

[if rguard]avg4_bu rsrel rsre2 rsre3 rsred rdest

where rsrcl, rsre2, rsre3, rsre4, and rdest are interpreted as
unsigned-byte vectors. In a particular type of VLIW
processor, this operation issues from a functional unit of type
superdspalu, uses issue slots 3 and 4, and has a latency of
two cycles. The operation takes the rounded average of the
four unsigned-byte vectors rsrcl, rsrc2, rsre3, and rsrc4 by
adding the vectors at a block 302 and dividing by four, i.e.,
right-shifting by two bits, at a block 304. Rounded averaging
is implemented by adding two prior to the right-shift
operation, as shown at a block 306. Although this added
quantity is shifted out in connection with block 304, the
rounding hardware perceives it as a value of one-half, and
applies rounding accordingly. The type of rounding applied
depends on the value of an integer rounding mode value, for
example, as shown above in Table 1. The rounded averaging
operation may make use of an optional guard register, as
specified in rguard. If a guard register is present and has a
value of TRUE, the operation is performed. If the guard
register has a value of FALSE, no operation takes place. By
way of example, the operation

avg4_bu 110 r20 r30 r40 r50
where
r10=0xff ff ff 02 63_1e 00_dl
r20=00_01_ff 03_02_00_01_4d2
r30=0xff ff ff 96 01_1e 00_d1
r40=00_01_ff 01 _01_01_01_d2
produces the result
r50=0x80_80_ff 27 1a Of 01 d2.

Another operation that can be performed is a rounded
average of two unsigned-byte vectors, as shown by the
example mode of operation 400 of FIG. 4. This operation
takes the syntax

[if rguard]avg bu rsrel rsre2 rdest

where rsrcl, rsre2, and rdest are interpreted as unsigned-byte
vectors. In a particular type of VLIW processor, this opera-
tion issues from a functional unit of type dspalu, uses issue
slots 3 and 4, and has a latency of two cycles. The operation
takes the rounded average of the two unsigned-byte vectors
rsrcl and rsrc2 by adding the vectors at a block 402 and
dividing by two, i.e., right-shifting by one bit, at a block 404.
Rounded averaging is implemented by adding one prior to
the right-shift operation, as shown at a block 406. Although
this added quantity is shifted out in connection with block
404, the rounding hardware perceives it as a value of
one-half, and applies rounding accordingly. The type of
rounding applied depends on the value of an integer round-
ing mode value, for example, as shown above in Table 1. The
rounded averaging operation may make use of an optional
guard register, as specified in rguard. If a guard register is
present and has a value of TRUE, the operation is per-
formed. If the guard register has a value of FALSE, no
operation takes place.
As an example, the operation

avg__bu r10 r20 130

US 6,889,242 B1

where
r10=00_fF a0_fa ff e6_78_0a

r20=00_ff a0_ff fO_f0_82 14

produces the result

r30=00_ff a0_fd_f8 eb_7d_0Of.

According to another implementation of the invention, the
processor is configured to perform a non-saturating fixed-
point fractional multiplication operation with rounding of a
signed- and an unsigned-byte vector. FIG. 5 depicts an
example mode of operation 500 of the processor 10 of FIG.
1 for performing an operation of this type. This operation
takes the syntax

[if rguard]mspmul_bsus rsrel rsre2 rdest

where rsrcl and rdest are interpreted as signed-byte vectors
and rsrc2 is an unsigned-byte vector. In a particular type of
VLIW processor, this operation issues from a functional unit
of type mul, uses issue slots 2 and 3, and has a latency of
three cycles. For each vector element, this operation per-
forms a non-saturating fixed-point fractional two-quadrant
multiplication operation with rounding of a signed-byte
vector and an unsigned-byte vector, as shown at a block 502.
The upper eight bits of each 16-bit product are stored in
the corresponding element in the rdest register. As described
above, dropping the least significant half of the bits corre-
sponds to dividing the result by a power of two. In this case,
the lower eight bits are dropped by right-shifting by eight
bits, as shown at a block 504. The type of rounding applied
depends on the value of an integer rounding mode value, for
example, as shown above in Table 1. Depending on the
rounding mode, a rounding term, which may be zero, is
added to the product at a block 506 prior to right-shifting.
The fractional multiplication operation may make use of an
optional guard register, as specified in rguard. If a guard
register is present and has a value of TRUE, the operation is
performed. If the guard register has a value of FALSE, no
operation takes place. For example, the operation

mspmul__bsus r10 120 130
where
r10=0xfe_ff 01_80_f0_10_f0_10

r20=0xff_ff ff ff 02_02_10_08

and the integer rounding mode value is 000 (i.e., round
toward negative infinity) produces the result

r30=0xfe_ ff 00_80_ff 00_ff 00.

Still another type of operation that can be performed is a
non-saturating fixed-point fractional multiplication opera-
tion with rounding of two unsigned-byte vectors. FIG. 6
illustrates an example mode of operation 600 of the proces-
sor 10 of FIG. 1 for performing such an operation. This
operation takes the syntax

[if rguard] mspmul_bu rsrel rsre2 rdest

where rsrel, rsre2, and rdest are interpreted as unsigned-byte
vectors. In a particular type of VLIW processor, this opera-
tion issues from a functional unit of type mul, uses issue
slots 2 and 3, and has a latency of three cycles. For each
vector element, this operation performs a non-saturating

10

15

20

25

30

35

40

45

50

55

60

65

8

fixed-point fractional one-quadrant multiplication operation
with rounding of two unsigned-byte vectors, as shown at a
block 602.

The upper eight bits of each 16-bit product are rounded
and stored in the corresponding element in the rdest register.
As described above, dropping the least significant half of the
bits corresponds to dividing the result by a power of two. In
this case, the lower eight bits are dropped by right-shifting
by eight bits, as shown at a block 604. The type of rounding
applied depends on the value of an integer rounding mode
value, for example, as shown above in Table 1. Depending
on the rounding mode, a rounding term is added to the
product at a block 606 prior to right-shifting. The fractional
multiplication operation may make use of an optional guard
register, as specified in rguard. If a guard register is present
and has a value of TRUE, the operation is performed. If the
guard register has a value of FALSE, no operation takes
place.

For example, the operation
mspmul__bu r10 120 130
where
110=0x10_02_02_80_10_80_ff
120=00_0f_80_ff_02_10_10_01

and the integer rounding mode value is 010 (i.e., round
toward zero) produces the result

r30=00_00_01_01_01_01_08_00.

According to still another embodiment, the processor is
also configured to perform a non-saturating fixed-point
fractional multiplication operation with rounding of two
signed half-word vectors, for example, using a mode of
operation 700 of FIG. 7. This operation takes the syntax

[if rguard]mspmul__hs rsrel rsre2 rdest

where rsrel, rsrc2, and rdest are interpreted as signed
half-word vectors. In a particular type of VLIW processor,
this operation issues from a functional unit of type mul, uses
issue slots 2 and 3, and has a latency of three cycles. For
each vector element, this operation performs a non-
saturating fixed-point fractional four-quadrant multiplica-
tion operation with rounding of two signed half-word
vectors, as shown at a block 702.

The upper sixteen bits of each 32-bit product are rounded
and stored in the corresponding element in the rdest register.
Dropping the least significant half of the bits corresponds to
dividing the result by a power of two. In this case, the lower
sixteen bits are dropped by right-shifting by sixteen bits, as
shown at a block 704. The type of rounding applied depends
on the value of an integer rounding mode value, for example,
as shown above in Table 1. Depending on the rounding
mode, a rounding term is added to the product at a block 706
prior to right-shifting. The fractional multiplication opera-
tion may make use of an optional guard register, as specified
in rguard. If a guard register is present and has a value of
TRUE, the operation is performed. If the guard register has
a value of FALSE, no operation takes place.

For example, the operation

mspmul__hs r10 120 130

US 6,889,242 B1

where
r10=0x4000__8000__4000__7ff
120=0xfff3_ffff 0002_0001

and the integer rounding mode value is 000 (i.e. round
toward negative infinity) produces the result

r30=0xffff_ 0001__0001__0000.

In yet another embodiment, the processor is configured to
perform a non-saturating fixed-point fractional multiplica-
tion operation with rounding of a signed half-word vector
and an unsigned half-word vector, for example, using a
mode of operation 800 of FIG. 8. This operation takes the
syntax

[if rguard] mspmul__hsus rsrel rsre2 rdest

where rsrcl and rdest are interpreted as signed half-word
vectors and rsrc2 is an unsigned half-word vector. In a
particular type of VLIW processor, this operation issues
from a functional unit of type mul, uses issue slots 2 and 3,
and has a latency of three cycles. For each vector element,
the operation performs a non-saturating fixed-point frac-
tional two-quadrant multiplication operation with rounding
of a signed half-word vector and an unsigned half-word
vector, as shown at a block 802. The lower sixteen bits of
each 32-bit product are rounded and stored in the corre-
sponding element in the rdest register by right-shifting by
sixteen bits, as shown at a block 804. The type of rounding
applied depends on the value of an integer rounding mode
value, for example, as shown above in Table 1. Depending
on the rounding mode, a rounding term is added to the
product at a block 806 prior to right-shifting. The fractional
multiplication operation may make use of an optional guard
register, as specified in rguard. If a guard register is present
and has a value of TRUE, the operation is performed. If the
guard register has a value of FALSE, no operation takes
place.
For example, the operation

mspmul__hsus r10 120 130
where
r10=0x8000__ffff 0002_0100

r20=0xffff_ 4000_ffff 0040

and the integer rounding mode value is 000 (i.e., round
toward negative infinity) produces the result

r30=0x8000__ffff 0001_0000.

According to still another embodiment, the processor is
also configured to perform a non-saturating fixed-point
fractional multiplication operation with rounding of two
unsigned half-word vectors, for example, using a mode of
operation 900 of FIG. 9. This operation takes the syntax

[if rguard] mspmul__hu rsrel rsre2 rdest

where rsrcl, rsrc2, and rdest are interpreted as unsigned
half-word vectors. In a particular type of VLIW processor,
this operation issues from a functional unit of type mul, uses
issue slots 2 and 3, and has a latency of three cycles. For
each vector element, this operation performs a non-
saturating fixed-point fractional one-uadrant multiplication
operation with rounding of two unsigned half-word vectors,
as shown at a block 902.

10

15

20

25

30

35

40

45

50

55

60

65

10

The upper sixteen bits of each 32-bit product are rounded
and stored in the corresponding element in the rdest register.
As described above, dropping the least significant half of the
bits corresponds to dividing the result by a power of two. In
this case, the lower sixteen bits are dropped by right-shifting
by sixteen bits, as shown at a block 904. The type of
rounding applied depends on the value of an integer round-
ing mode value, for example, as shown above in Table 1.
Depending on the rounding mode, a rounding term is added
to the product at a block 906 prior to right-shifting. The
fractional multiplication operation may make use of an
optional guard register, as specified in rguard. If a guard
register is present and has a value of TRUE, the operation is
performed. If the guard register has a value of FALSE, no
operation takes place.

For example, the operation

mspmul__hu r10 120 130
where

r10=0Oxfffe_ ffff ffff 0100

r20=0x01__8000__ffff_ 0040

and the integer rounding mode value is 010 (i.e., round
toward zero) produces the result

r30=0000__7fff_ fff3_ 0000.

In yet another embodiment, the processor is also config-
ured to perform a non-saturating fixed-point fractional mul-
tiplication operation with rounding of two signed word
vectors, for example, using a mode of operation 1000 of
FIG. 10. This operation takes the syntax

[if rguard] mspmul_ws rsrel rsre2 rdest

where rsrcl, rsrc2, and rdest are interpreted as signed word
vectors. In a particular type of VLIW processor, this opera-
tion issues from a functional unit of type mul, uses issue
slots 2 and 3, and has a latency of three cycles. For each
vector element, this operation performs a non-saturating
fixed-point fractional four-quadrant multiplication operation
with rounding of two signed word vectors, as shown at a
block 1002.

The upper thirty-two bits of each 64-bit product are
rounded and stored in the corresponding element in the rdest
register. Dropping the least significant half of the bits
corresponds to dividing the result by a power of two. In this
case, the lower thirty-two bits are dropped by right-shifting
by thirty-two bits, as shown at a block 1004. The type of
rounding applied depends on the value of an integer round-
ing mode value, for example, as shown above in Table 1.
Depending on the rounding mode, a rounding term is added
to the product at a block 1006 prior to right-shifting. The
fractional multiplication operation may make use of an
optional guard register, as specified in rguard. If a guard
register is present and has a value of TRUE, the operation is
performed. If the guard register has a value of FALSE, no
operation takes place.

For example, the operation

mspmul__ws 110 r20 130
where
r10=0x004000__ffff 8000

r20=0x7ftfftfe fFf

US 6,889,242 B1

1

and the integer rounding mode value is 000 (i.e., round
toward negative infinity) produces the result

r30=0xffffffe_ 00000000.

The processor can also be configured to perform a non-
saturating fixed-point fractional multiplication operation
with rounding of a signed word vector and an unsigned word
vector, for example, using a mode of operation 100 of FIG.
11. This operation takes the syntax

[if rguard] mspmul__wsus rsrel rsre2 rdest

where rsrcl and rdest are interpreted as signed word vectors
and rsrc2 is an unsigned word vector. In a particular type of
VLIW processor, this operation issues from a functional unit
of type mul, uses issue slots 2 and 3, and has a latency of
three cycles. For each vector element, the operation per-
forms a non-saturating fixed-point fractional two-quadrant
multiplication operation with rounding of a signed word
vector and an unsigned word vector, as shown at a block
1102.

The lower sixteen bits of each 32-bit product are rounded
and stored in the corresponding element in the rdest register
by sixteen bits, as shown at a block 1104. The type of
rounding applied depends on the value of an integer round-
ing mode value, for example, as shown above in Table 1.
Depending on the rounding mode, a rounding term is added
to the product at a block 1106 prior to right-shifting. The
fractional multiplication operation may make use of an
optional guard register, as specified in rguard. If a guard
register is present and has a value of TRUE, the operation is
performed. If the guard register has a value of FALSE, no
operation takes place.

For example, the operation

mspmul__wsus r10 120 130
where

r10=0x80000000

r20=0xfHf

and the integer rounding mode value is 000 (i.e., round
toward negative infinity) produces the result

130=0xc0000000.

As another example, assuming
r10=0xfEFEFE 80000000
120=0x80000000__7fFEFfEE.

the same operation produces the result
r30=0xffffff freft.

The processor can also be configured to perform a non-
saturating fixed-point fractional multiplication operation
with rounding of two unsigned word vectors, for example,
using a mode of operation 1200 of FIG. 12. This operation
takes the syntax

[if rguard] mspmul__wu rsrcl rsre2 rdest

where rsrcl, rsrc2, and rdest are interpreted as unsigned
word vectors. In a particular type of VLIW processor, this
operation issues from a functional unit of type mul, uses
issue slots 2 and 3, and has a latency of three cycles. For

10

15

20

25

30

35

40

45

50

55

60

65

12

each vector element, this operation performs a non-
saturating fixed-point fractional one-quadrant multiplication
operation with rounding of two unsigned word vectors, as
shown at a block 1202. The upper thirty-two bits of each
64-bit product are rounded and stored in the corresponding
element in the rdest register.

As described above, dropping the least significant half of
the bits corresponds to dividing the result by a power of two.
In this case, the lower thirty-two bits are dropped by
right-shifting by thirty-two bits, as shown at a block 1204.
The type of rounding applied depends on the value of an
integer rounding mode value, for example, as shown above
in Table 1. Depending on the rounding mode, a rounding
term is added to the product at a block 1206 prior to
right-shifting. The fractional multiplication operation may
make use of an optional guard register, as specified in
rguard. If a guard register is present and has a value of
TRUE, the operation is performed. If the guard register has
a value of FALSE, no operation takes place.

For example, the operation
mspmul__wu r10 r20 30
where
110=0x80000000__80000001

r20=0x80000000__fFFfff

and the integer rounding mode value is 010 (i.e., round
toward zero) produces the result

r30=0x40000000__80000000.

In another particular embodiment of the invention, the
processor is further configured to perform an arithmetic
right-shift of a signed-byte vector by an immediate shift
amount with rounding. This operation can be performed, for
example, using a mode of operation 1300 of FIG. 13. The
operation takes the syntax

[if rguard]sriround_bs (s) rsrel rdest

where rsrcl and rdest are interpreted as signed byte vectors
and s is an immediate argument in the range of O to 7. In a
particular type of VLIW processor, this operation issues
from a functional unit of type shift round, uses issue slots
1 and 2, and has a latency of two cycles. For each destination
element, the operation performs an arithmetic, i.e., sign
extending right-shift operation on the corresponding ele-
ment of rsrel depending on the value of the immediate
argument s, as shown at a block 1302. The type of rounding
applied depends on the value of an integer rounding mode
value, for example, as shown above in Table 1. Depending
on the rounding mode, a rounding term is added to the
operand at a block 1304 before shifting is performed. The
operation may make use of an optional guard register, as
specified in rguard. If a guard register is present and has a
value of TRUE, the operation is performed. If the guard
register has a value of FALSE, no operation takes place.

By way of example, the operation
sriround_ bs (2) r10 120
where

r10=0x04_03_02_01_00_ff fe fd

US 6,889,242 B1

13

and the integer rounding mode value is 011 (i.e., round to the
nearest integer, with half being rounded to zero) produces
the result

r20=0x01_01_00_00_00_00_00_f.

On the other hand, the same operation with the integer
rounding mode value set to 101 (i.e., round to the nearest
integer, with half being rounded toward positive infinity)
produces the result

r20=0x01_01_01_00_00_00_00_f.

With the integer rounding mode value set to 001 (i.e., round
to the nearest integer, with half being rounded toward
negative infinity), the result is instead

r20=0x01_01_00_00_00_00_ff_ff.

In still another embodiment of the invention, the proces-
sor is further configured to perform a logical right-shift of an
unsigned-byte vector by an immediate shift amount with
rounding. This operation can be performed, for example,
using a mode of operation 1400 of FIG. 14. The operation
takes the syntax

[if rguard] sriround_ bu (s) rsrel rdest

where rsrcl and rdest are interpreted as unsigned byte
vectors and s is an immediate argument in the range of O to
7. In a particular type of VLIW processor, this operation
issues from a functional unit of type shift_round, uses issue
slots 1 and 2, and has a latency of two cycles. For each
destination element, the operation performs a logical, i.e.,
zero extending right-shift, operation on the corresponding
element of rsrcl depending on the value of the immediate
argument s, as shown at a block 1402. The type of rounding
applied depends on the value of an integer rounding mode
value, for example, as shown above in Table 1. Depending
on the rounding mode, a rounding term is added to the
operand at a block 1404 before shifting is performed. The
operation may make use of an optional guard register, as
specified in rguard. If a guard register is present and has a
value of TRUE, the operation is performed. If the guard
register has a value of FALSE, no operation takes place.
As an example, the operation

sriround__bu (2) r10 120
where
r10=0x07_06_05_04_03_02_01_00

and the integer rounding mode value is 011 (i.e., round to the
nearest integer, with half being rounded to zero) produces
the result

r20=0x02_01_01_01_01_00_00_00.

On the other hand, the same operation with the integer
rounding mode value set to 101 (i.e., round to the nearest
integer, with half being rounded toward positive infinity)
produces the result

r20=0x02_02_01_01_01_01_00_00.

With the integer rounding mode value set to 001 (i.e., round
to the nearest integer, with half being rounded toward
negative infinity), the result is instead

r20=0x02_01_01_01_01_00_00_00.

10

15

20

25

30

35

40

45

50

55

60

65

14

Another operation that can be performed is an arithmetic
right-shift of a signed double word by an immediate shift
amount with rounding. This operation can be performed, for
example, using a mode of operation 1500 of FIG. 15. The
operation takes the syntax

[if rguard] sriround_ ds (s) rsrel rdest

where rsrcl and rdest are interpreted as signed double word
vectors and s is an immediate argument in the range of 0 to
63. In a particular type of VLIW processor, this operation
issues from a functional unit of type shift round, uses issue
slots 1 and 2, and has a latency of two cycles. For each
destination element, the operation performs an arithmetic,
i.e., sign extending right-shift operation on the correspond-
ing element of rsrcl depending on the value of the imme-
diate argument s, as shown at a block 1502. The type of
rounding applied depends on the value of an integer round-
ing mode value, for example, as shown above in Table 1.
Depending on the rounding mode, a rounding term is added
to the operand at a block 1504 before shifting is performed.
The operation may make use of an optional guard register,
as specified in rguard. If a guard register is present and has
a value of TRUE, the operation is performed. If the guard
register has a value of FALSE, no operation takes place.
By way of example, the operation

sriround__ds (2) r10 120
where
r10=0OxfEfffFft fFFrd

and the integer rounding mode value is 011 (i.e., round to the
nearest integer, with half being rounded to zero) produces
the result

r20=0xfEfffFft P,

The same result is obtained with the integer rounding mode
value set to 101 (i.e., round to the nearest integer, with half
being rounded toward positive infinity) or 001. With the
integer rounding mode value set to 010 (i.e., round toward
zero), the result is instead

120=0x0_0.

According to another embodiment of the invention, any of
the integer rounding operations described above in connec-
tion with FIGS. 2-15 can be implemented in a system 1600
of FIG. 16. The system 1600 includes a processor 1602, such
as the processor 10 of FIG. 1, and a memory 1604.

Various methods for performing integer rounding opera-
tions in a computer processor have been described. Besides
conventional rounding operations, i.e., rounding down
toward negative infinity in all cases, alternative rounding
modes can be specified. Depending in part on the particular
rounding mode used and on the sign of the value to be
rounded, a rounding term is added to the value to be rounded
before right-shifting is performed. Adding the rounding term
ensures that the desired result is obtained.

It is to be understood that, even though numerous char-
acteristics and advantages of various embodiments of the
invention have been set forth in the foregoing description,
together with details of the structure and function of various
embodiments of the invention, this disclosure is illustrative
only, and changes may be made within the principles of the
invention to the fill extent indicated by the broad general
meaning of the terms in which the appended claims are
expressed.

US 6,889,242 B1

15

What is claimed is:

1. A method comprising:

executing two separate instructions in a programmable

processor, comprising:

executing a first instruction in the programmable pro-
cessor to set a rounding mode; and

executing a second instruction within the program-
mable processor to generate an integer result
rounded according to the rounding mode, wherein
the second instruction does not designate the round-
ing mode.

2. The method of claim 1, wherein executing the second
instruction comprises executing an instruction that performs
a rounded averaging operation.

3. The method of claim 1, wherein executing the second
instruction comprises executing an instruction that performs
a non-saturating, fixed-point fractional multiplication opera-
tion with rounding.

4. The method of claim 1, wherein executing the second
instruction comprises executing an instruction that performs
a right-shift operation with rounding.

5. The method of claim 1, wherein executing the first
instruction comprises executing an instruction that sets a
rounding mode selected from a group of rounding modes
comprising:

rounding toward negative infinity;

rounding toward infinity;

rounding toward zero;

rounding away from zero;

rounding to a nearest integer, with a value of one-half

being rounded toward negative infinity;

rounding to a nearest integer, with a value of one-half

being rounded toward infinity;

rounding to a nearest integer, with a value of one-half

being rounded toward zero; and

rounding to a nearest integer, with a value of one-half

being rounded away from zero.

6. The method of claim 1, wherein the second instruction
includes an arithmetic right-shift operation on a vector
operand by an immediate shift amount with rounding, and
wherein the vector operand comprises a signed byte vector,
an unsigned byte vector, a signed double word or an
unsigned double word.

7. A method comprising:

executing a first instruction to set a rounding mode;

performing an operation within a programmable proces-

sor to produce a result according to a second
instruction, wherein the second instruction does not
designate the rounding mode;

adding a rounding term to the result to obtain an inter-

mediate result, the rounding term determined at least in
part as a function of the rounding mode and a shift
amount; and

right-shifting the intermediate result by the shift amount.

8. The method of claim 7, wherein executing the first
instruction comprises executing an instruction that sets a
rounding mode selected from the group of rounding modes
comprising:

rounding toward negative infinity;

rounding toward infinity;

rounding toward zero;

rounding away from zero;

rounding to a nearest integer, with a value of one-half

being rounded toward negative infinity;

10

15

20

25

30

35

40

45

50

55

60

65

16

rounding to a nearest integer, with a value of one-half

being rounded toward infinity;

rounding to a nearest integer, with a value of one-half

being rounded toward zero; and

rounding to a nearest integer, with a value of one-half

being rounded away from zero.

9. The method of claim 7, wherein the operation is a
rounded averaging operation of two or four unsigned byte
vectors.

10. The method of claim 7, wherein the operation is a
non-saturating fixed-point fractional multiplication opera-
tion with rounding of a set of vector operands selected from
signed half-word vectors, unsigned half-word vectors,
signed word vectors and unsigned word vectors.

11. A method of compiling a processor-readable software
program comprising parsing a software program to produce
instructions executable by a programmable processor,
wherein the instructions include two separate instructions,
comprising a first instruction that sets a rounding mode, and
a second instruction that performs an arithmetic operation
yielding an integer result rounded according to the rounding
mode, wherein the second instruction does not designate the
rounding mode.

12. The method of claim 11, wherein the second instruc-
tion performs a rounded averaging operation.

13. The method of claim 11, wherein the second instruc-
tion performs a non-saturating fixed-point fractional multi-
plication operation with rounding.

14. The method of claim 11, wherein the second instruc-
tion performs a right-shift operation with rounding.

15. The method of claim 11, wherein the first instruction
sets a rounding mode selected from the group of rounding
modes comprising:

rounding toward negative infinity;

rounding toward infinity;

rounding toward zero;

rounding away from zero;

rounding to a nearest integer, with a value of one-half

being rounded toward negative infinity;

rounding to a nearest integer, with a value of one-half

being rounded toward infinity;

rounding to a nearest integer, with a value of one-half

being rounded toward zero; and

rounding to a nearest integer, with a value of one-half

being rounded away from zero.

16. The method of claim 11, wherein the arithmetic
operation is an arithmetic right-shift operation on a vector
operand by an immediate shift amount with rounding,
wherein the vector operand comprises a signed byte vector,
an unsigned byte vector, a signed double word or an
unsigned double word.

17. A method of compiling a processor-readable software
program comprising parsing a software program to produce
instructions executable by a programmable processor,
wherein the instructions cause the programmable processor
to:

execute a first instruction to set a rounding mode;

perform an arithmetic operation according to a second

instruction, wherein the second instruction does not
designate the rounding mode;

add a rounding term to a result of the arithmetic operation

to obtain an intermediate result, the rounding term
determined at least in part as a function of the rounding
mode and a shift amount; and

right-shift the intermediate result by the shift amount.

US 6,889,242 B1

17

18. The method of claim 17, wherein executing the first
instruction comprises executing an instruction that sets a
rounding mode selected from the group of rounding modes
comprising:

rounding toward negative infinity;

rounding toward infinity;

rounding toward zero;

rounding away from zero;

rounding to a nearest integer, with a value of one-half

being rounded toward negative infinity;

rounding to a nearest integer, with a value of one-half

being rounded toward infinity;

rounding to a nearest integer, with a value of one-half

being rounded toward zero; and

rounding to a nearest integer, with a value of one-half

being rounded away from zero.

19. The method of claim 17, wherein the arithmetic
operation is a rounded averaging operation of two or four
unsigned byte vectors.

20. The method of claim 17, wherein the arithmetic
operation is a non-saturating fixed-point fractional multipli-
cation operation with rounding of a set of vector operands
selected from signed half-word vectors, unsigned half-word
vectors, signed word vectors and unsigned word vectors.

21. A processor-readable medium having processor-
executable instructions for:

executing two separate instructions in a programmable

processor, comprising:

executing a first instruction in the programmable proces-

sor to set a rounding mode; and

executing a second instruction within the programmable

processor to generate an integer result rounded accord-
ing to the rounding mode, wherein the second instruc-
tion does not designate the rounding mode.

22. The processor-readable medium of claim 21, wherein
executing the second instruction comprises executing an
instruction that performs a rounded averaging operation.

23. The processor-readable medium of claim 21, wherein
executing the second instruction comprises executing an
instruction that performs a non-saturating fixed-point frac-
tional multiplication operation with rounding.

24. The processor-readable medium of claim 21, wherein
executing the second instruction comprises executing an
instruction that performs a right-shift operation with round-
ing.

25. The processor-readable medium of claim 21, wherein
executing the first instruction comprises executing an
instruction that sets a rounding mode selected from the
group of rounding modes comprising:

rounding toward negative infinity;

rounding toward infinity;

rounding toward zero;

rounding away from zero;

rounding to a nearest integer, with a value of one-half

being rounded toward negative infinity;

rounding to a nearest integer, with a value of one-half

being rounded toward infinity;

rounding to a nearest integer, with a value of one-half

being rounded toward zero; and

rounding to a nearest integer, with a value of one-half

being rounded away from zero.

26. The processor-readable medium of claim 21, wherein
the second instruction includes an arithmetic right-shift
operation on a vector operand by an immediate shift amount

10

20

25

30

35

40

45

50

55

60

65

18

with rounding, wherein the vector operand comprises a
signed byte vector, an unsigned byte vector, a signed double
word or an unsigned double word.
27. A processor-readable medium having processor-
executable instructions for:
executing a first instruction to set a rounding mode;
performing an arithmetic operation according to a second
instruction, wherein the second instruction does not
designate the rounding mode;

adding a rounding term to a result of the arithmetic
operation to obtain an intermediate result, the rounding
term determined at least in part as a function of the
rounding mode and a shift amount; and

right-shifting the intermediate result by the shift amount.

28. The processor-readable medium of claim 27, wherein
executing the first instruction comprises executing an
instruction that sets a rounding mode selected from the
group of rounding modes comprising:

rounding toward negative infinity;

rounding toward infinity;

rounding toward zero;

rounding away from zero;

rounding to a nearest integer, with a value of one-half

being rounded toward negative infinity;

rounding to a nearest integer, with a value of one-half

being rounded toward infinity;

rounding to a nearest integer, with a value of one-half

being rounded toward zero; and

rounding to a nearest integer, with a value of one-half

being rounded away from zero.

29. The processor-readable medium of claim 27, wherein
the arithmetic operation is a rounded averaging operation of
two or four unsigned byte vectors.

30. The processor-readable medium of claim 27, wherein
the arithmetic operation is a non-saturating fixed-point frac-
tional multiplication operation with rounding of a set of
vector operands selected from signed half-word vectors,
unsigned half-word vectors, signed word vectors and
unsigned word vectors.

31. A processor, comprising:

a control register to store a rounding mode of a first

instruction;

a functional unit; and

a control unit to direct the functional unit to perform an

arithmetic function according to the rounding mode in
response to a second instruction, wherein the second
instruction does not designate the rounding mode.

32. The processor of claim 31, wherein the second instruc-
tion comprises a rounded averaging operation.

33. The processor of claim 31, wherein the second instruc-
tion comprises a non-saturating fixed-point fractional mul-
tiplication operation with rounding.

34. The processor of claim 31, wherein the second instruc-
tion comprises a right-shift operation with rounding.

35. The processor of claim 31, further comprising:

a fetch unit configured to receive an instruction from an

instruction stream,

a decode unit configured to decode the received instruc-

tion; and

a register file coupled to the plurality of functional units

and configured to store an result.

36. The processor of claim 31, wherein the first instruction
sets a rounding mode selected from the group of rounding
modes comprising:

US 6,889,242 B1

19

rounding toward negative infinity;
rounding toward infinity;
rounding toward zero;

rounding away from zero;

rounding to a nearest integer, with a value of one-half
being rounded toward negative infinity;

rounding to a nearest integer, with a value of one-half
being rounded toward infinity;

rounding to a nearest integer, with a value of one-half
being rounded toward zero; and

rounding to a nearest integer, with a value of one-half
being rounded away from zero.

37. The processor of claim 31, wherein the arithmetic
operation is an arithmetic right-shift operation on a vector
operand by an immediate shift amount with rounding,
wherein the vector operand comprises a signed byte vector,
an unsigned byte vector, a signed double word or an
unsigned double word.

38. A processor, comprising:

a control unit comprising a control register configured to
store a representation of a selected rounding mode
designated by a first instruction;

at least one functional unit coupled to the control register;

a fetch unit configured to receive a second instruction
from an instruction stream;

a decode unit configured to decode the second instruction;
and

a register file coupled to the plurality of functional units,

the control unit configured to

perform an arithmetic operation according to the sec-
ond instruction, wherein the second instruction does
not designate the rounding mode,

add a rounding term to a result of the arithmetic
operation to obtain an intermediate result, the round-
ing term determined at least in part as a function of
the selected rounding mode and a shift amount,

right-shift the intermediate result by the shift amount to
generate a rounded result, and

store the rounded result in the register file.

39. The processor of claim 38, wherein the control unit is
further configured to execute the first instruction to set the
rounding mode.

40. The processor of claim 39, wherein the first instruction
sets a rounding mode selected from the group of rounding
modes comprising:

rounding toward negative infinity;

rounding toward infinity;

rounding toward zero;

rounding away from zero;

rounding to a nearest integer, with a value of one-half

being rounded toward negative infinity;

rounding to a nearest integer, with a value of one-half

being rounded toward infinity;

rounding to a nearest integer, with a value of one-half

being rounded toward zero; and

rounding to a nearest integer, with a value of one-half

being rounded away from zero.

41. The processor of claim 38, wherein the arithmetic
operation is a rounded averaging operation of two or four
unsigned byte vectors.

42. The processor of claim 38, wherein the arithmetic
operation comprises performing a non-saturating fixed-point
fractional multiplication operation with rounding of a set of

20

vector operands selected from signed half-word vectors,
unsigned half-word vectors, signed word vectors and
unsigned word vectors.

43. A system comprising:

S a memory; and
a processor comprising
a control register to store a rounding mode of a first
instruction,
10 a functional unit, and
a control unit to direct the functional unit to perform an
arithmetic function according to the rounding mode
in response to a second instruction, wherein the
second instruction does not designate the rounding
15 mode.

44. The system of claim 43, wherein the second instruc-
tion comprises a rounded averaging operation.
45. The system of claim 43, wherein the second instruc-
tion comprises a non-saturating fixed-point fractional mul-
20 tiplication operation with rounding of a set of vector oper-
ands selected from signed half-word vectors, unsigned half-
word vectors, signed word vectors and unsigned word
vectors.
46. The system of claim 43, wherein the second instruc-
25 tion comprises a right-shift operation with rounding.
47. The system of claim 43, wherein the rounding mode
is selected from the group of rounding modes comprising:

rounding toward negative infinity;
rounding toward infinity;

30 .
rounding toward zero;

rounding away from zero;

rounding to a nearest integer, with a value of one-half
being rounded toward negative infinity;

35 rounding to a nearest integer, with a value of one-half

being rounded toward infinity;

rounding to a nearest integer, with a value of one-half
being rounded toward zero; and

rounding to a nearest integer, with a value of one-half

being rounded away from zero.

48. The system of claim 43, wherein the second instruc-
tion includes an arithmetic right-shift operation on a vector
operand by an immediate shift amount with rounding,
wherein the vector operand comprises a signed byte vector,
an unsigned byte vector, a signed double word or an
unsigned double word.

49. A system, comprising:

40

a memory; and

50 a control unit comprising a control register configured to
store a representation of a selected rounding mode

designated by a first instruction;
at least one functional unit coupled to the control register;

a fetch unit configured to receive a second instruction

55 from an instruction stream;

a decode unit configured to decode the second instruction;
and

a register file coupled to the plurality of functional units,

60 the control unit configured to
perform an arithmetic operation according to the sec-
ond instruction, wherein the second instruction does
not designate the rounding mode,
add a rounding term to a result of the arithmetic
operation to obtain an intermediate result, the round-
ing term determined at least in part as a function of

the selected rounding mode and a shift amount,

65

US 6,889,242 B1

21

right-shift the intermediate result by the shift amount to
generate a rounded result, and
store the rounded result in the register file.

50. The system of claim 49, wherein the processor is
further configured to execute the first instruction to set the
rounding mode.

51. The system of claim 50, wherein executing the first
instruction comprises executing an instruction that sets a
rounding mode selected from the group of rounding modes
comprising:

rounding toward negative infinity;

rounding toward infinity;

rounding toward zero;

rounding away from zero;

rounding to a nearest integer, with a value of one-half
being rounded toward negative infinity;

10

15

22

rounding to a nearest integer, with a value of one-half
being rounded toward infinity;

rounding to a nearest integer, with a value of one-half
being rounded toward zero; and

rounding to a nearest integer, with a value of one-half

being rounded away from zero.

52. The system of claim 49, wherein the arithmetic
operation is a rounded averaging operation of two or four
unsigned byte vectors.

53. The system of claim 49, wherein the arithmetic
operation is a non-saturating fixed-point fractional multipli-
cation operation with rounding of a set of vector operands
selected from signed half-word vectors, unsigned half-word
vectors, signed word vectors and unsigned word vectors.

#* #* #* #* #*

	Bibliographic Data
	Claim
	Drawing
	Description
	Abstract

