Onthe Bendits of Speculéive Trace Schedling in VLIW
Pro@ssors

Marvi Agarwal andS. K. Nandy
CADL, SERC
IndianInstitute of Science,
Bangalore]ndia

Abstract

VLIW processcs are statically schediled processos
and their performane depads on the quality of the
compiler’s scheduler We proposea scheduling scheme
whele the apgication is first dividedinto decisiontrees
andthenfurther split into traces.We havedevelopda
tool “SpliTree” to generte tracesautomdically. Using
dynanic branch predictionfor selectingthe root of the
decisiontreefromwhich thetracesare schedule using
our scheme we obtainapproximaely 1.4x performarce
improvemenbverthatusingdecisionreesfor Spec9int
bendimarkssimulatedon TriMedia”™ processar

Keywords VLIW processofscheduling, specu
lative tracescheduling, ILP.

1 Introduction

“Very Long Instruction Word Processr”, widely
known as “VLIW” processoris a paradgm for
simple hardvare and high compug capadty. In
a VLIW processorthe micro-archiecturd details
areexposedto the compier andthe compile gen
erates schediles to exploit maximum Instruction
Level Parallelism (ILP) presntin the code The
two main method of schealuling in VLIW proces-
sorsare: basicblockschedding andextendedbasic
block schedding. Basic block scheduling is lim-
ited in its scope to exploiting ILP becawse of the
smallsize of the bast blocks. (4-5 interdepenent
opeifationson an average in eachbasicblock.) In
extended bast block schediling, groups of basic
blocks areschaluledasa single unit. Exterdedba-
sic block schediling can be catayorized into fol-
lowing: trace schedding, superblock scheduling,
hypeblock scheduling and dedsion tree schedul-

JosvanEijndhovenandS. Balakrishnan

PhilipsResearch.aboratories
Eindhoven, The Netherlands

ing. Although the scope of optimizdion is en-
larged, thesemethod still suffer from the ineffec-
tive useof the VLIW issueslots to launch opera-
tions, asexplainedin the latertext of the pape.

In this paper we propose a new schediling
schemewhich ensuesminimal issueslot wastag.
The appication is first divided into decigon trees
andthenfurthersplit into traces by thetool SpliTree
developed by us. Tracesof the appication are
formedwith the help of prdfile information of the
application All the dedsion points are removed
from thebody of thetraceandextra codeis inseited
atthetail to checkfor correct condtions. Removal
of decison points from the body of the trace as-
siststhe compile to perfom optimizations which
arenot possble otherwis. Our schemeachieesa
gainin schalulelength andoverallimprovemert in
perfamance.Thetraces areexecued specuatively
andhercethe peralty paidis the numberof cycles
to the errar exit jump, which is often at the end of
thetrace.

Therestof thepaperis organizedasfollows: sec-
tion 2 gives an overview of the scheduling tech-
niques for VLIW processors In section 3 we ex-
plain our spealative tracescheduling schemeand
give resluts of the simulaions. We summarizethe
contiibution of thework in sectian 4 anddraw con-
clusions.

2 Related Work in Scheduling in
VLIW Processors

Scheduhg is the processof gereratirg a sequence
of micro-operatins of the code so that they can
beloadedon the underlying hardvareunits for ex-
ecuton. As mentiored earlia, two methals of

—«— Merge

Point
\

(a) (b) ()

~Merge

Point l

>
=

(d) (e)

Figurel: Typesof Extendbd BasicBlock Schediling Scopes{a) Trace,(b) Supeblock, (c) Hyperldock, (d) Decision

treeand(e) Tracedor Speculatie TraceSchedling

schaluling are: Basic block schedding and Ex-
tenced basic block scheduling. The schediling
scopes usedin extended basic block schediling
schemes are illustrated in figure 1. Various ex-
tenced basc block scheduling schemesare elabo
ratedbelow.

In trace schedding [4], the compile picks the
mostlikely pathof execution and schelulesit for
execufon. Usingatrace it is possible to expose
available ILP becaiseseverd basc blocks arein-
cludedin it which canbe schediled in pardlel on
the undelying VLIW processor Side entries as
well assideexits areallowed in traces becase of
which bodk-keeping of the operaions, which have
beenmovedacrassbasicblocks, is required. In su-
perdock schaluling the overheal of book-keepng
is obviatedaselaloratedbelow.

Supeblock scheduling [8] is similar to the trace
scheluling except thatit doesnotallow ary sideen-
tries. Tracesareformedalongwith tail duplication
pastfork points. Thereis only a unigue entry point
as oppo®d to trace schediling which has multi-
ple entty points. This schaluling schene doesnot
permit code motion pastfork points which malkes
book-keepng unne@ssaryand givesan adwantage
over trace schediling. A drawvback of supeblock
and trace scheduling is that both the schediling
scheanesexecue only one path of the appication.
Selectia of the wrong pathfor execution basel on
profile informaton leads to wastag of processo
cycles Hyperldock schedding and dedsion tree
scheduling schalule multiple pathsin onescheadil-
ing scope.

Hyperlock scheduling [7] is differentfrom trace

and supeblock schaluling in that multiple paths
areschediledin asingle unit. Hyperblock schedil-

ing usespredication to form schedling scopes.
Predicaion is the condtional execuion of instruc-
tions basedon the value of booleanoperand which
is known as the predicate As shawn in figure
1, the hypeblock cancontain multiple paths com-
binedtogetherby if-conversian andtail duplication

Basic blocks contaning procedure calls and unre-
solvable memoryaccessesarenotincludedin ahy-

perbbck. It is a single enty strucure with multi-

ple sideexits. The processof if-conversion trans-
forms the control dependercy to datadepemencg

and henceoptimizations can be performedon the
hyperldock which arenot possiblein traceschedl-

ing.

Decisiontree scheduling [5] is anotrer method
of extended basicblock schedilling andis similar
to supertiock schedilling dueto the abserce of join
points and side entries Eachleaf of a decisbn
tree endsin a procelure call or jump to a differ-
enttree. Thereareno side exits from the interior
basicblocks of adecison treeandthereis only one
entry point which is the root of the decison tree.
Predicaion canbe employed in decisbn trees sim-
ilar to hyperbock schediling, to perform compier
optimizationsandhenceexploit morelLP.

Control opemationsin all the schediling scopes
discuissedabove are either predicated or delayed.
In the caseof delayedbranchoperdions,thesched-
uler hasto find appr@riateoperaionsto fill thede-
lay slotsof the brancles. If the scheluleris unable
to find these opemtions it fills themwith “nops”.
The issueslots thus get wastedwhich othewise

Figure2: (a) A DecisionTree(b) Tracesof the DecisionTree

could be usedto schalule operatons on the func-

tiond units. Dueto the preseaceof contrd opera

tionsin the decison tree, requred code optimiza-
tions cannd be performedbecase the opemtions
following abrarch canrot be schaluledearier than
the brandh. This canbe avoided by using guaded
or predcatedexecution in which thecortrol depen-
deng is corvertedinto data depemleny with the
help of predcates With the help of predcatereg-
isters operations areschediled assoonastheir data
depeadeny is met. Thevalue of the predcatereg-
isters detemineswhethe theresut would be com-
mitted or maslked. Thoughefficient schalulescan
be gereratedwith higher codedensty, effectively
this leads to thewastag of isswe slotsof the VLIW

processors Theseissueslotscouldinsteadbe used
to isswe opemrtionsof the taken path. We propose
a speclative tracescheluling scheman this pape

in whichthereis minimalissueslotwastag andef-

ficient schedilesaregenentedwith high code den

sity. The scheduling unit in our schemeis a sin-

gle enty and singe exit structure which we call

“probable execution trace”. Hencdorth, “pr oba

ble executiontrace” will bereferredto as“tr ace”.

In the following secton we explain our schediling

schemein moredetal.

3 Speculative Trace Scheduling

Spealative trace sceduling schemecorsists of
two phass. In the first phag of the compila
tion processthe applicationis dividedinto decison
trees After this pha® an intermealiate file is ob-
tained which is a tree file andit contains the ap-
plication cocde divided into several decksion trees.
In the secom pha® of the compilation process the
treefile is trarsformedinto atracefile i.e. eachde-
cision treein thetreefile is split into its correpond

sum = sum + b;

printf("Sum= %\ n", sum;

Figure3: Pseudaodefor the DecisionTreeshawvn in
figure4

ing traces. Thesetracefiles arethenschaluled on
theundelying VLIW procesorusing list schedil-
ing. The decigon treesare split into traces in the
mannershownin figure 2. Path ABCF forms one
traceasshavn in figure2. Similarly all thepossble
pathsin the decsiontreearesplit into comrespon-
ing traces During the formation of the traces the
decison points are removed from the body of the
traceandextra opemtions areinsered at thetail to
checkfor corred cortrol flow condtions. The op-
eratimsin thetrace do notfaceordeiing constaints
during schediling becaiseof the removal of deci-
sion points from the body of the trace. The oper
atiors are scheduledas soonas their datadepen-
deng is met. During the formation of the traces,
eachtrace is anrotatedwith the probability of exe-
cution of the pathincludedin it basedon theprofile
information of the applcation (if available). If the
profile information of the apdication is not avail-
ablethenequalprobability is givento all paths of
the dedsion tree. No delay slots are allocatedfor
thebrand opemationsattheendof thetrace becawse
brand prediction is employed to predct branchdi-
rection whenthetraceis executeal. Gainin schedile
lengths is achieved and code densty is increased
in the schedllesgenegatedby this scheme. As the
checkfor the corredly executel trace is doneonly
at the end of the trace,the penaly paid on a trace
mispredction is the length of the trace. The pro-

__main_DT_1: (* DT_1, BB:2 line 11 *)
tree (12)
(* BB:2, line 11, Ox21acaO *)
1 rdreg (4);
2 rdreg (33);
3 rdreg (35);
4 rdreg (34);
5 rdreg (36);
6 iaddi (1) 5;
7 iadd 5 4;
8 iaddi (1) 7;
9 iaddi (1) 3;
10 ileqi (6) 9;
(* End of BB:2, line 9, Ox21acaO *)
if 10 (0.857143) then
12 wrreg (36) 6 after 5;
13 wrreg (34) 8 after 4;
14 wrreg (35) 9 after 3;
gotree {_main_DT_1}
else (10)
(* BB:3, line 14, 0x21d4e0 *)
15 st32d (0) 1 2;
16 st32d (4) 1 8;
17 uimm (__main_DT_2);
18 wrreg (5) 2;
19 wrreg (6) 8;
20 wrreg (2) 17;
(* End of BB:3, line 14, 0x21d4e0 *)
gotree { printf}
end (10)

endtree

[C))

__main_DT_1:
(* cycle O *)

IFrl iaddi(Ox1) r36 —> r36 (* alu/Op6 *),
IF rl iaddi(Ox1) r35 —> r35 (* alu/Op9 *),
IFrl uimm(__main_DT_1) —>r8,

IFr1 iaddi(Ox1) r36 —> r37 (* alu/Op7 *),
IFrl iadd rOr33 —>r5 (* WR *) (* alu/OP18 *);

(* cycle 1 %)

IFrl1 igtri(6) r35 —>r7 (* alu/Op10 *),
IFrl iadd r34r37 —>r6 (* alu/Op8 *).
IFrl iadd r34 r37 —> r34,

IFrl uimm(_main_DT_2) —>r37 (* const/Op17 *),
IFrl1 nop;

(* cycle 2 *)

IFr7 iaddrOr37 —>r2 (* WR %) (* alu/Op20 *),
IFrl ijmpfr7 r8,

IF r7 ijmpi(_printf),

IFr7 h_st32d(4) r6r4 (* dmem/Op16 *),
IFr7 h_st32d(0) r33r4 (* dmem/Op15 *);

(* cycle 3 %)
IFr1 nop,
IFrl nop,
IFrl nop,
IF r1 nop,
IFrl nop;

(* cycle 4 %)
IFrl nop,
IFrl nop,
IFrl nop,
IFrl nop,
IFrl nop;

(* cycle 5 %)
IFrl nop,
IFrl nop,
IF r1 nop,
IF r1 nop,
IFrl nop;

()

Figure4: (a) Decisiontreeasgeneatedby the TriMedia compler. (b) Scheduleof the decisiontreein (a) geneated

by the TriMedia scheduler

cesso hasto roll backto the previous checkpoint
statein theeventof amispredction with thehelp of
addtional hardvare support. A setof shadowreg-
isters canbe maintainedalongwith theworking set
of registasin thehardware. Thestateof theproces-
sor at the end of previously execued correct trace
is stored in the shadowregistes. In the caseof a
correct predction, working registersarecommitted
into the shadowregistersandexecuion of the new
trace proceeds On a mispredction the working
registersarediscadedandthe stateof theprocesso
is retrievedfrom theshadowregistersandexecuion
of the next tracestarts The memorywrites of the
current trace canbe labded pendng till the check
for the correcttraceis made. If the execuedtrace
turnsoutto be correct,perding memoryopemtions
are marked committed On a mispredction these
pendng memorywritesarediscaded.

3.1 Exploiting ILP

Theschalulesgereratedoy our schanehave highe
codedensty ascompaed to the schelulesgerer
ated using deckion trees We explain this vis a
vis the schediler usad by TriMedia tool set. Fig-
ure 4(a) showsthe decisbn treefor the “for loop”

of the psewo code shownin figure 3 gererated
by the TriMedia compile and figure 4(b) shavs
the correponding scheduledcodegeneatedby the
schediler (no useof loop-unroling capabilities of
the compier wasmadeto genentethe scheduleof
4(b)). The numbe in the parenhesisof the “if ”

condtion (figure 4(a)) shows the probability with

which that condtion is taken. As seenin figure
4(b), the schediler hasschaluledthewholetreeby
using predicatedexecution. All the operdions are
“if guarded”. Registerrl is hardwvired registe of

TriMedia with value 1. Registerr7 is the mask-
ing registe whoseleastsignificant bit (LSB) deter-

mineswhetherthe corespomling resuts would be
committedor masled. If thevalueof LSB of r7 is

1 thenthe resuls are taken into account and if it

is 0 thenthe results are masled and the execution
proceeds. Thetotal numker of cycles taken by the
processorto executethis schedile is 6. As evident
from the figure, last 3 cyclesdo not issueary op-
eratin but they have to beincluded beauseof the
brand operations which have a delay of 3 cycles.
4 isste slots are seenwastedin third cycle of the
schedileto schedle the“else” part (with probabil-
ity of execuion as0.14) of the decison tree with

registe r7 astheir predcateregister sinceboth the

__main_DT_1b:
tree(12)

(* overall probability of the trace __main_DT_1b is 0.857143 *)
(* source line: 11 *)

(* successors: __main_DT_1b (0.857143), _ _main_DT_1c (0.142857) *)
1 rdreg (4);

2 rdreg (33);

3 rdreg (35);

4 rdreg (34);

5 rdreg (36);

6 iaddi (1) 5;

7 iadd 5 4;

8iaddi (1) 7;

9 iaddi (1) 3;

10 ileqi (6) 9;

(* source line: 9 *)

(* successors: none *)

12 wrreg (36) 6 after 5;
13 wrreg (34) 8 after 4;
14 wrreg (35) 9 after 3;
if 10 then
gotree { _main_DT_1}
else (10)
gotree {_error}
end (10)
endtree

CY

__main_DT_1b:
(* cycle 0 *)
IFrl iaddi(Ox1) r36 —> r36
IFrl iaddi(Ox1) r35 —>r35
IFrl iaddi(Ox1) r36 —>r7
IFrl uimm(__main_DT_1) —>r37,
IFrl nop;

(* alu/Op6 *),
(* alu/Op9 *),
(* alu/Op7 *),

(*cycle 1 %)

IFrl igtri(6) r35 —>r8
IFrl iaddr34r7 —>r34
IFrl nop,

IFrl nop,

IFrl nop;

(* alu/Op10 *),
(* alu/Op8 *),

(* cycle 2 %)

IFrl nop,

IFrl ijmpfr8r37,
IF r8 ijmpi(__error),
IFrl nop,

IFrl nop;

(b)

Figure5: (a) Traceof the mostprobalte pathof the decisiontree shavn in figure 4(a) geneatedby SpliTree (b)
Schedie of thetraceshavn in (a) geneatedby the TriMedia schedier usingbranchpredictian.

“if " andthe “else” partareschaluledin predcated
execuion. Figure5(a) showsthe trace of the most
probable pathof thetreeshownin figure 4(a). The

headof eachtrace contains the overal execuion

probability of the traceand does not have cortrol

opemtionsin thebody The schaluledcode of the
tracein figure 5(a) is shawvn in figure 5(b). If the

brarch predction is accuate then the trace takes
only 3 cycles to execute the samepart of the code
asoppasedto 6 cycles taken by the correpondng

tree.On atracemispredction, roll backopemtions
are perfamed and the peralty paid is the length
of trace,which in this exampk is 3 cycles. In the

schaluleof figure5(b)thereis noissueslotwastage
in schediling theseconl pathof thedecison treeof

figure4(a). As appaentfrom thefiguresthesched

ule length hasshmunk by 3 cycles by usingspecua-

tive trace schediling.

3.2 Simulation and Results

The simuldion ernvironmentusedfor the project is
Philips TriMedia SDE version 2.0 tool set, which
is a Philips proprietary softwaretool. The TriMe-
dia compier “tmcc” bre&ks down the code into
severd decison treesdepemling on the application
andgeneatestreefiles in the intermedate format,
known as“tr eescode” in the termindogy of Tri-
Media. Thesetree-filesare corvertedinto trace

files with the help of our toal SpliTree SpliTree
takes asinput the treefiles and geneatestrace-
files with all thetreessplit into their correponding
traces While geneating thesetraces SpliTree cal-
culates the overall probaility of the execuion of
the tracebaseal on the profile information (if avail-
able)obtaired from the previous runsof the appli-
cation. If the profile informationis not available
then equd probability is givento all paths Each
traceis anrotatedwith this probability. The trace
labelis in accadane with thelabd of thelastbasic
block includedin it. Thesetracesarethensched-
uledontheundelying hardvareunitswith thehelp
of TriMedia schealuler “tmsched”. “tmsched” at
the time of scheluling, consults machire descip-
tion file to geneateprope schediles. Sinceatrace
is devoid of contrd opemtionsin its body, there is
no overheal of idle processorcycles asillustrated
in figure 5. Figure4(a) showsthetreecode gerer-
atedby thetmccwhoseschedile is givenin figure
4(b). The code of the most prababletrace of the
sametreeis shown in figure 5(a) with its schedile
in figure5(b). Thenumberof branchdelayslotsis O
cyclesin ourschalulebe@usedynamicbrand pre-
diction is employedto predict the brarch direction
at the end of the tracewhenthe traceis executed
To account for the reduction of brarch delay slots
in the caseof brarch predction, we have modified

No Branch Prediction Branch Prediction

Decision

Trees Case O Case 1

Probable
Execution
Traces

Case 2 Case 3

Figure 6: SchedulingSpaceof Decision Treesand
Probalte Execuion Traces

the machinedesciption of TriMedia by chandng
the brand delayto O cycles.

In orde to clealy shav the efficiency of the
speallative trace schaluling schane propasedin
this pape, we cover the scheduling spae of both
decison treesand probable execufon traces with
and without branchprediction. This is pictorially
depictedin figure 6. The expressionfor the execu
tion time of the application, “ET;,..." for CaseQ is
givenby:

ETt'ree = Z Etree * Lt’ree (1)
Virees

where,'E 1,." istheexecution court of thedeck
siontree,“L 4¢." is the schedile length of thetree
andcanbe expressedas Lyq¢. = E;}ath:l Lpain *
Dpath- L patr” 1S thelength of ead pathof a deck
siontreeand“p 4" is theprobability of executon
of the path The expressionfor the executian time,

“ET piree” Of theapplicationin Casel is givenby:

ETptree = Z Etree * (Ltree + Mptree) (2)

Virees

where “MP ... is the effective pendty
for mispredcted tree. The expression
for calailating “MP.e.” IS MPyee =
R x MispredictionPenalty where “R” is
the next PC mispraliction rate of the branch
predctor and misprediction peralty for eachtree
is equalto the numberof pipdine stage between
the fetch and the execute unit of the processor
Executin time, “ET 4. Of the apgdication in
Case2 is givenby:

ETt'race = Z Et'race * Ltrace * Ptrace (3)

Vitraces

where “L ;qce” IS the schedule length of the
trace “E ;rqce” IS the execution countof trace and
“Drace 1S the probability of the execuion of the

trace. Executian time, “ET p4,.4.¢” Of the applica-
tion in Case3 is givenby:

ETptrace = Z Etrace*Ptrace* (Ltrace +MRfrace)
Viraces
(4)

where “MP 4...." is the effective mispredction
penaty of the trace andis given by M B qce =

R x MispredictionPenalty. “R” is thenext PC
mispredction rate of the brand predctor andmis-
predictionpenaty is equd to thelength of thetrace.
Theresutsfor Cased, 2 and3 arenormalzedwith
respet to thatof Case0 andarerepatedin Table
1.

As already mentinedin earler sectbns, addi-
tiona hardware (which is not preentin TriMedia)
is neessaryto nullify theexecutionof wrondy pre-
dicted traces. The brand predctor for the VLIW
processorsusedin this work is the oneproposedby
JanHoogebrugee in [3]. Therateof brand mis-
prediction depends on the implemenation of the
brand predidor aswell ason the application If
a lot of brarch opeatiors are preset in an ap-
plication andthe behaviorof the branckescharge
frequently thenthe rate of branch mispredction is
high for suchan apdication. Resultshase been
providedfor Spec2 berchmarks We usedSpec92
benchmarksto evaluae our resuls becaisethese
are adequate to quantfy the resuts for embeded
applicatiors.

As canbeseenin Tablel, againin performance
is achieved in all the three case as compaed to
decison trees with delayed brandesof TriMedia.
Casel resuls have beenrepotted by JanHooger
brugee [3] and we have repraducedthem in this
paperfor the sale of compari®n with our specu-
lative traceschediling scheane. Performane gain
in the caseof brarch predction is obvious consd-
eringthefactthatbrand delay slots areredwcedto
zero. Case2 resuts (shownin column 2 of Table
1) give the theordical advantage of trace schedll-
ing (unpredidedtraces) over decison treeschedil-
ing. Theseresuls are producedto shav the effi-
ciengy of trace schaluling ascomparel to decisbn
tree schaluling. The advantagds obtaineddueto
theremoval of control opemationsfrom the body of
thetrace becaiseof whichtheoperationsaremoved
highe upin theschedile andisswe slotsareutilized
moreefficiently. Decisian treeswith brand predc-

Table 1: Performamwe improvementrelaive to delayed branchesin Trimedia for three cases predcted
brarchesin trees, split traces(no brarch prediction andbrand preditionin traces

Schedling Schemes
Benchmark | Predictel Trees| UnpredctedTraces| Predictel Traces
008.espesso 1.168 1.2336 1.537
022li 1.226 1.0825 1.3631
023.eqntot 1.162 1.1348 1.4009
072.sc 1.0913 1.1111 1.3677
Average 1.1620 1.1405 1.4170

tion perform bette thanunpredictedtracesbecaise
of the absace of brarch delay slotsin the former.
A significant gain is seenin the caseof predided
traces (column 3 of Table 1) as comparel to pre-
dicted trees. This is dueto two reasos: 1) branch
delayslot redwction and2) theremoval of decison
points from the body of the trace becaiseof which
ordeing constrairts areabset for scheduling oper
atiors.

The performance achieved by our schediling
schane is approximatdy 1.417 times the original
TriMedia schealuling schenewhichis basedon de-
cision trees. The perfomanceof predcted traces
is apprimately 1.2 timesthe performanceof pre-
dicted trees(column 1 and 3 of Tablel1). Thereis
code growth due to replication of code for form-
ing traces. However, the performancegainis con
sidembleto offsetthe disadvantaye of codeexpan
sion. Forlongtraces,themispredction penaty will
be high. Consideing the factthatthe intermediate
chedkpoints will be bendicial for suchcaseslong
traces canbe artificially split into smallertracesin
accadancewith the scheme.Moreover in embed
dedapplicatiors tracesare not too long andthis is
true of the berchmarkscompied.

4 Conclusion

The performanceof the VLIW processos can be
improved consderally by dividing the application
into numberof tracesand speculatively schedl-
ing them accading to their probability of execu
tion (obtaned by profiling the appication). The
perfoomanceobtanedby usis appraimately 1.417
timesthe original TriMedia performanceusing the
schaluling schemeresentedin this paper. Wehave
shaown that by annotting tracesaccoding to their

probability of execution (obtainedby profiling the
application andscheduling themaccading to this
probaility the numbe of mispredictions incurred
is minimal.

References

[1] Jaime H. Moremo et al, “Scalable In-
struction Level Parallelism through Tree
Instructiors”, IBM Research Report,

http://ww. research.i bmcom

[2] JanHoogerbrigge et al., “Instruction Schediing
for TriMedia, Journd of Instruction Level Paral-
lelism,1, 199.

[3] JanHoogerbrgge,“Dynamic BranchPredictian for
aVLIW Processdr In Proceeding of the 2000In-
ternationd Confeene onParallel Architectueand
CompilerTechniques, Philadelplia, PA, Oct.200Q

[4] JohnR. Ellis, “BULLDOG: A Compilerfor VLIW
Architectues”, PhDthesis,Yale University, 1985

[5] PeterY. T. Hsu et al., “Highly Concurent Scalar
Processing”, In Proceedigs of the 13t Inter-
natioral Symposiumon Compuer Architecture,
14(2:386- 395 Tokyo, June 1985.

[6] Sanje® Banerjiaet al., “Treggion Schediing for
Highly Parallel Processors”,In Proceeding of
Euro-Par'97, pp. 10741078, Passau, Germany,
Aug. 199/.

[7] ScottA. Mahalle et al., “Effective Compiler Sup-
port for PredicatedExecuion using the Hyper
block”, In Proceedigs of the 25t Annua Inter-
natioral Symposiunon Microarchitectue, pp. 45-
54,Potland,Oregon, USA, Dec.1-4, 199.

[8] W. W. Hwu et al., “The Superiock: An Effective
Structurefor VLIW andSuperscalaCompilatiory,
Journd of Supecomputing pp. 229248 19%.

