
OntheBenefits of SpeculativeTraceScheduling in VLIW
Processors

Manvi Agarwal andS.K. Nandy
CADL, SERC

IndianInstituteof Science,
Bangalore,India

JosvanEijndhovenandS.Balakrishnan
PhilipsResearchLaboratories
Eindhoven,TheNetherlands

Abstract

VLIW processors are statically scheduled processors
and their performance depends on the quality of the
compiler’s scheduler. We proposea scheduling scheme
where theapplication is first dividedinto decisiontrees
andthenfurther split into traces.We havedevelopeda
tool “SpliTree” to generate tracesautomatically. Using
dynamic branch predictionfor selectingthe root of the
decisiontreefromwhich thetracesare scheduled using
our scheme, weobtainapproximately 1.4x performance
improvementoverthatusingdecisiontreesfor Spec92int
benchmarkssimulatedonTriMedia

���
processor.

Keywords: VLIW processor, scheduling, specu-
lative tracescheduling, ILP.

1 Introduction

“Very Long Instruction Word Processor”, widely
known as “VL IW” processoris a paradigm for
simple hardware and high compute capacity. In
a VLIW processorthe micro-architectural details
areexposedto the compiler andthe compiler gen-
erates schedules to exploit maximum Instruction
Level Parallelism (ILP) present in the code. The
two main methods of scheduling in VLIW proces-
sorsare:basicblockscheduling andextendedbasic
block scheduling. Basic block scheduling is lim-
ited in its scope to exploiting ILP because of the
small sizeof thebasic blocks. (4-5 interdependent
operationson an average in eachbasicblock.) In
extended basic block scheduling, groups of basic
blocks arescheduledasa single unit. Extendedba-
sic block scheduling can be categorized into fol-
lowing: trace scheduling, superblock scheduling,
hyperblock scheduling and decision tree schedul-

ing. Although the scope of optimization is en-
larged, thesemethods still suffer from the ineffec-
tive useof the VLIW issueslots to launch opera-
tions, asexplainedin thelatertext of thepaper.

In this paper we propose a new scheduling
schemewhich ensuresminimal issueslot wastage.
The application is first divided into decision trees
andthenfurthersplit into tracesby thetool SpliTree
developed by us. Tracesof the application are
formedwith the help of profile informationof the
application. All the decision points are removed
from thebody of thetraceandextracodeis inserted
at thetail to checkfor correct conditions. Removal
of decision points from the body of the traceas-
siststhe compiler to perform optimizations which
arenot possible otherwise. Our schemeachievesa
gainin schedulelength andoverall improvement in
performance.Thetracesareexecutedspeculatively
andhencethepenalty paid is thenumberof cycles
to the error exit jump, which is often at the endof
thetrace.

Therestof thepaperis organizedasfollows: sec-
tion 2 gives an overview of the scheduling tech-
niques for VLIW processors. In section 3 we ex-
plain our speculative tracescheduling schemeand
give results of the simulations. We summarizethe
contributionof thework in section 4 anddraw con-
clusions.

2 Related Work in Scheduling in
VLIW Processors

Scheduling is theprocessof generating a sequence
of micro-operations of the code so that they can
beloadedon theunderlying hardwareunits for ex-
ecution. As mentioned earlier, two methods of

Merge
Point

Merge
Point

(a) (b) (c) (d) (e)

Figure1: Typesof ExtendedBasicBlock Scheduling Scopes:(a)Trace,(b) Superblock,(c) Hyperblock, (d) Decision
treeand(e)Tracesfor SpeculativeTraceScheduling

scheduling are: Basic block scheduling and Ex-
tended basic block scheduling. The scheduling
scopes used in extended basic block scheduling
schemes are illustrated in figure 1. Various ex-
tended basic block scheduling schemesareelabo-
ratedbelow.

In trace scheduling [4], the compiler picks the
most likely pathof execution andschedulesit for
execution. Using a trace, it is possible to expose
available ILP becauseseveral basic blocks are in-
cluded in it which canbe scheduled in parallel on
the underlying VLIW processor. Side entries as
well assideexits areallowed in tracesbecauseof
which book-keeping of the operations,which have
beenmovedacrossbasicblocks, is required. In su-
perblock scheduling theoverhead of book-keeping
is obviatedaselaboratedbelow.

Superblock scheduling [8] is similar to the trace
schedulingexcept thatit doesnotallowany sideen-
tries. Tracesareformedalongwith tail duplication
pastfork points. Thereis only a unique entrypoint
as opposed to trace scheduling which has multi-
ple entry points. This scheduling schemedoesnot
permit code motion pastfork points which makes
book-keeping unnecessaryandgivesan advantage
over trace scheduling. A drawbackof superblock
and trace scheduling is that both the scheduling
schemesexecute only onepathof the application.
Selection of thewrongpathfor execution based on
profile information leads to wastage of processor
cycles. Hyperblock scheduling and decision tree
scheduling schedulemultiple pathsin oneschedul-
ing scope.

Hyperblock scheduling [7] is differentfrom trace

and superblock scheduling in that multiple paths
arescheduledin asingleunit. Hyperblock schedul-
ing usespredication to form scheduling scopes.
Predication is theconditional execution of instruc-
tionsbasedon thevalueof booleanoperand which
is known as the predicate. As shown in figure
1, the hyperblock cancontain multiple paths com-
binedtogetherby if-conversion andtail duplication.
Basicblocks containing procedurecalls andunre-
solvable memoryaccessesarenot includedin ahy-
perblock. It is a single entry structure with multi-
ple sideexits. The processof if-conversion trans-
forms the control dependency to datadependency
and henceoptimizations can be performedon the
hyperblock whicharenotpossiblein traceschedul-
ing.

Decisiontree scheduling [5] is another method
of extended basicblock scheduling and is similar
to superblock scheduling dueto theabsenceof join
points and side entries. Each leaf of a decision
tree endsin a procedure call or jump to a differ-
ent tree. Thereareno side exits from the interior
basicblocksof adecision treeandthereis only one
entry point which is the root of the decision tree.
Predication canbeemployed in decision trees sim-
ilar to hyperblock scheduling, to perform compiler
optimizationsandhenceexploit moreILP.

Control operationsin all the scheduling scopes
discussedabove are either predicated or delayed.
In thecaseof delayedbranchoperations,thesched-
ulerhasto find appropriateoperationsto fill thede-
lay slotsof thebranches. If thescheduler is unable
to find theseoperations, it fills themwith “nops” .
The issueslots thus get wastedwhich otherwise

B

A

B

C

F

A

C

G

B

A

B

E

 I

A

H
H

B

E

A

F

H

C

H

 I

E

G

A

B

 (a) (b)

Figure2: (a)A DecisionTree(b) Tracesof theDecisionTree

could be usedto schedule operations on the func-
tional units. Due to the presenceof control opera-
tions in the decision tree, required code optimiza-
tions cannot be performedbecause the operations
following abranchcannot bescheduledearlier than
the branch. This canbe avoided by using guarded
or predicatedexecution in which thecontrol depen-
dency is convertedinto data dependency with the
help of predicates. With the help of predicatereg-
istersoperationsarescheduledassoonastheir data
dependency is met. Thevalue of thepredicatereg-
isters determineswhether theresult would becom-
mitted or masked. Thoughefficient schedulescan
be generatedwith higher codedensity, effectively
this leads to thewastageof issueslotsof theVLIW
processors. Theseissueslotscould insteadbeused
to issue operationsof the taken path. We propose
a speculative tracescheduling schemein this paper
in which there is minimal issueslotwastageandef-
ficient schedulesaregeneratedwith high codeden-
sity. The scheduling unit in our schemeis a sin-
gle entry and single exit structure which we call
“pr obable execution trace”. Henceforth, “pr oba-
ble execution trace” will bereferredto as“tr ace”.
In the following section we explain our scheduling
schemein moredetail.

3 Speculative Trace Scheduling

Speculative trace scheduling schemeconsists of
two phases. In the first phase of the compila-
tion processtheapplicationis dividedinto decision
trees. After this phase an intermediate file is ob-
tained which is a tree file and it contains the ap-
plication code divided into several decision trees.
In thesecond phase of thecompilationprocess,the
treefile is transformedinto a tracefile i.e. eachde-
cision treein thetreefile is split into its correspond-

for (i = 0; i <= 6; i++)
{
 b++;
 sum = sum + b;
}
printf("Sum = %d\n",sum);

b = 1;
sum = a + b;

a = 0;

Figure3: Pseudocodefor theDecisionTreeshown in
figure4

ing traces. Thesetracefiles arethenscheduledon
theunderlying VLIW processorusing list schedul-
ing. The decision treesaresplit into traces in the
mannershownin figure 2. Path ABCF forms one
traceasshown in figure2. Similarly all thepossible
pathsin thedecision treearesplit into correspond-
ing traces. During the formation of the traces, the
decision points are removed from the body of the
traceandextra operations areinsertedat the tail to
checkfor correct control flow conditions. Theop-
erationsin thetracedonot faceordering constraints
during scheduling becauseof the removal of deci-
sion points from the body of the trace. The oper-
ations are scheduledas soonas their datadepen-
dency is met. During the formation of the traces,
eachtrace is annotatedwith theprobability of exe-
cution of thepathincludedin it basedon theprofile
informationof the application (if available). If the
profile information of the application is not avail-
able thenequalprobability is given to all paths of
the decision tree. No delayslots areallocatedfor
thebranch operationsattheendof thetracebecause
branch prediction is employed to predict branchdi-
rection whenthetraceis executed. Gainin schedule
lengths is achieved and codedensity is increased
in the schedulesgeneratedby this scheme. As the
checkfor the correctly executed trace is doneonly
at the endof the trace,the penalty paid on a trace
misprediction is the length of the trace. The pro-

(* BB:3, line 14, 0x21d4e0 *)
15 st32d (0) 1 2;
16 st32d (4) 1 8;
17 uimm (__main_DT_2);
18 wrreg (5) 2;
19 wrreg (6) 8;
20 wrreg (2) 17;
(* End of BB:3, line 14, 0x21d4e0 *)
gotree {_printf}

end (10)

(* cycle 0 *)

(* cycle 1 *)

IF r1 iadd r34 r37 −> r34,

IF r1 nop;

(* cycle 2 *)

IF r1 ijmpf r7 r8,
IF r7 ijmpi(_printf),

IF r1 nop,
IF r1 nop,
IF r1 nop,
IF r1 nop,
IF r1 nop;

IF r1 nop,
IF r1 nop,
IF r1 nop,
IF r1 nop,
IF r1 nop;

(* cycle 4 *)

(* cycle 5 *)

IF r1 uimm(__main_DT_1) −> r8,

IF r1 iaddi(0x1) r36 −> r36 (* alu/Op6 *),
IF r1 iaddi(0x1) r35 −> r35 (* alu/Op9 *),

IF r1 iaddi(0x1) r36 −> r37 (* alu/Op7 *),
IF r1 iadd r0 r33 −> r5 (* WR *) (* alu/OP18 *);

IF r1 iadd r34 r37 −> r6 (* alu/Op8 *).

IF r1 uimm(__main_DT_2) −> r37 (* const/Op17 *),

IF r7 iadd r0 r37 −> r2 (* WR *) (* alu/Op20 *),

IF r1 igtri(6) r35 −> r7 (* alu/Op10 *),

IF r7 h_st32d(4) r6 r4 (* dmem/Op16 *),
IF r7 h_st32d(0) r33 r4 (* dmem/Op15 *);

(* cycle 3 *)
IF r1 nop,
IF r1 nop,
IF r1 nop,
IF r1 nop,
IF r1 nop;

__main_DT_1: (* DT_1, BB:2 line 11 *)
tree (12)

__main_DT_1:

(* BB:2, line 11, 0x21aca0 *)
1 rdreg (4);
2 rdreg (33);
3 rdreg (35);
4 rdreg (34);

6 iaddi (1) 5;
7 iadd 5 4;

5 rdreg (36);

8 iaddi (1) 7;
9 iaddi (1) 3;

endtree

10 ileqi (6) 9;
(* End of BB:2, line 9, 0x21aca0 *)
if 10 (0.857143) then

else (10)
 gotree {__main_DT_1}
 14 wrreg (35) 9 after 3;
 13 wrreg (34) 8 after 4;
 12 wrreg (36) 6 after 5;

 (a) (b)

Figure4: (a) Decisiontreeasgeneratedby theTriMedia compiler. (b) Scheduleof thedecisiontreein (a) generated
by theTriMediascheduler

cessor hasto roll back to the previous checkpoint
statein theeventof amisprediction with thehelpof
additional hardwaresupport. A setof shadowreg-
isterscanbemaintainedalongwith theworking set
of registersin thehardware.Thestateof theproces-
sor at the endof previously executed correct trace
is stored in the shadowregisters. In the caseof a
correct prediction, working registersarecommitted
into theshadowregistersandexecution of thenew
trace proceeds. On a misprediction the working
registersarediscardedandthestateof theprocessor
is retrievedfrom theshadowregistersandexecution
of the next tracestarts. The memorywrites of the
current trace canbe labeled pending till the check
for the correct traceis made. If the executed trace
turnsout to becorrect,pending memoryoperations
are marked committed. On a misprediction these
pending memorywritesarediscarded.

3.1 Exploiting ILP

Theschedulesgeneratedby ourschemehavehigher
codedensity as compared to the schedulesgener-
ated using decision trees. We explain this vis a
vis the scheduler used by TriMedia tool set. Fig-
ure4(a)showsthe decision treefor the “for loop”

of the pseudo code shown in figure 3 generated
by the TriMedia compiler and figure 4(b) shows
thecorresponding scheduledcodegeneratedby the
scheduler (no useof loop-unrolling capabilities of
thecompiler wasmadeto generatethescheduleof
4(b)). The number in the parenthesisof the “if ”
condition (figure 4(a)) shows the probability with
which that condition is taken. As seenin figure
4(b), thescheduler hasscheduledthewholetreeby
usingpredicatedexecution. All the operations are
“if guarded”. Register r1 is hardwired register of
TriMedia with value 1. Register r7 is the mask-
ing register whoseleastsignificant bit (LSB) deter-
mineswhetherthe corresponding results would be
committedor masked. If thevalueof LSB of r7 is
1 then the results are taken into account and if it
is 0 thenthe results aremasked andthe execution
proceeds. The total number of cycles taken by the
processorto executethis schedule is 6. As evident
from the figure, last 3 cyclesdo not issueany op-
eration but they have to be includedbecauseof the
branch operations which have a delay of 3 cycles.
4 issue slots areseenwastedin third cycle of the
schedule to schedule the“else” part(with probabil-
ity of execution as 0.14) of the decision treewith
register r7 astheir predicateregister sinceboth the

 (* cycle 0 *)

IF r1 iaddi(0x1) r36 −> r7 (* alu/Op7 *),
IF r1 uimm(__main_DT_1) −> r37,
IF r1 nop;

(* cycle 1 *)

IF r1 nop,
IF r1 nop;

(* cycle 2 *)
IF r1 nop,
IF r1 ijmpf r8 r37,
IF r8 ijmpi(__error),
IF r1 nop,
IF r1 nop;

IF r1 iaddi(0x1) r36 −> r36 (* alu/Op6 *),
IF r1 iaddi(0x1) r35 −> r35 (* alu/Op9 *),

IF r1 igtri(6) r35 −> r8 (* alu/Op10 *),
IF r1 iadd r34 r7 −> r34 (* alu/Op8 *),
IF r1 nop,

tree(12)
__main_DT_1b: __main_DT_1b:

(* overall probability of the trace __main_DT_1b is 0.857143 *)
(* source line: 11 *)
(* successors: __main_DT_1b (0.857143), __main_DT_1c (0.142857) *)
1 rdreg (4);
2 rdreg (33);
3 rdreg (35);
4 rdreg (34);
5 rdreg (36);
6 iaddi (1) 5;
7 iadd 5 4;
8 iaddi (1) 7;
9 iaddi (1) 3;
10 ileqi (6) 9;
(* source line: 9 *)
(* successors: none *)

endtree

12 wrreg (36) 6 after 5;
13 wrreg (34) 8 after 4;
14 wrreg (35) 9 after 3;

 gotree {_error}

if 10 then

else (10)

end (10)

 gotree {__main_DT_1}

(a) (b)

Figure 5: (a) Traceof the mostprobable pathof the decisiontreeshown in figure 4(a) generatedby SpliTree. (b)
Schedule of thetraceshown in (a)generatedby theTriMediascheduler usingbranchprediction.

“if ” andthe“else” partarescheduledin predicated
execution. Figure5(a)showsthe trace of the most
probablepathof the treeshownin figure4(a). The
headof eachtracecontains the overall execution
probability of the traceanddoes not have control
operationsin the body. The scheduledcode of the
tracein figure 5(a) is shown in figure 5(b). If the
branch prediction is accurate then the trace takes
only 3 cycles to execute the samepart of the code
asopposedto 6 cycles taken by the corresponding
tree.On a tracemisprediction, roll backoperations
are performed and the penalty paid is the length
of trace,which in this example is 3 cycles. In the
scheduleof figure5(b)thereis noissueslotwastage
in scheduling thesecond pathof thedecision treeof
figure4(a).As apparentfrom thefiguresthesched-
ule length hasshrunk by 3 cyclesby usingspecula-
tive trace scheduling.

3.2 Simulation and Results

Thesimulation environmentusedfor theproject is
Philips TriMedia SDE version 2.0 tool set,which
is a Philips proprietary software tool. The TriMe-
dia compiler “tmcc” breaks down the code into
several decision treesdepending on theapplication
andgeneratestreefiles in the intermediate format,
known as “tr eescode” in the terminology of Tri-
Media. Thesetree-filesare converted into trace-

files with the help of our tool SpliTree. SpliTree
takes as input these treefiles andgeneratestrace-
files with all thetreessplit into their corresponding
traces. While generating thesetraces SpliTreecal-
culates the overall probability of the execution of
the tracebased on theprofile information(if avail-
able)obtained from theprevious runsof the appli-
cation. If the profile information is not available
then equal probability is given to all paths. Each
traceis annotatedwith this probability. The trace
labelis in accordancewith thelabel of thelastbasic
block includedin it. Thesetracesare thensched-
uledontheunderlying hardwareunitswith thehelp
of TriMedia scheduler “tmsched”. “tmsched” at
the time of scheduling, consults machine descrip-
tion file to generateproper schedules.Sincea trace
is devoid of control operationsin its body, there is
no overhead of idle processorcycles as illustrated
in figure5. Figure4(a)showsthe treecode gener-
atedby the tmccwhoseschedule is given in figure
4(b). The code of the most probabletraceof the
sametreeis shown in figure 5(a) with its schedule
in figure5(b). Thenumberof branchdelayslotsis 0
cyclesin ourschedulebecausedynamicbranch pre-
diction is employed to predict thebranch direction
at the endof the tracewhenthe traceis executed.
To account for the reduction of branch delayslots
in thecaseof branch prediction, we have modified

Decision
Trees

No Branch Prediction Branch Prediction

Probable

Case 0

Case 2

Case 1

Case 3Execution
Traces

Figure 6: SchedulingSpaceof Decision Treesand
Probable Execution Traces

the machinedescription of TriMedia by changing
thebranch delayto 0 cycles.

In order to clearly show the efficiency of the
speculative trace scheduling scheme proposed in
this paper, we cover the scheduling space of both
decision treesandprobableexecution traces, with
andwithout branchprediction. This is pictorially
depictedin figure6. Theexpression for theexecu-
tion time of theapplication, “ET������� ” for Case0 is
givenby:

	�
 �������
� �
� ���������

	 ������������������� (1)

where,“E ������� ” is theexecution count of thedeci-
sion tree,“L ������� ” is theschedule length of the tree
andcanbe expressedas � ������� �������� � �"!$# � ��� � � �% ��� � � . “L ��� � � ” is the length of each pathof a deci-
siontreeand“p �"� � � ” is theprobability of execution
of thepath. Theexpression for theexecution time,
“ET � ������� ” of theapplicationin Case1 is givenby:

	�
 � ��������� �
� ���������

	 �������&�(')���������+*-,/.$�������10 (2)

where “MP ������� ” is the effective penalty
for mispredicted tree. The expression
for calculating “MP ������� ” is: ,2.3������� �4 �5,26�7 %98;:"< 6>=1?�6>@BAC. : ACDFEG?�H where “R” is
the next PC misprediction rate of the branch
predictor and misprediction penalty for eachtree
is equalto the numberof pipeline stages between
the fetch and the execute unit of the processor.
Execution time, “ET ��� �JI � ” of the application in
Case2 is givenby:

	K
 ��� �LI �M� �
� ��� �LI ���

	 ��� �LI ��������� �JI ��� % ��� �JI � (3)

where “L ��� �JI � ” is the schedule length of the
trace, “E ��� �JI � ” is the execution countof trace and
“p ��� �JI � ” is the probability of the execution of the

trace. Execution time, “ET � ��� �JI � ” of the applica-
tion in Case3 is givenby:

	�
 � ��� �JI �M� �
� ��� �JI ���

	 ��� �LI �"� % ��� �JI ���N')����� �JI �O*�,/. ��� �LI ��P
(4)

where “MP ��� �JI � ” is the effective misprediction
penalty of the trace and is given by ,/.Q��� �LI �R�4 �(,S6�7 %T8Q:�< 6>=1?�6�@UAC. : ACDFEV?�H . “R” is the next PC
misprediction rateof thebranch predictor andmis-
predictionpenalty is equal to thelength of thetrace.
Theresultsfor Cases1,2 and3 arenormalizedwith
respect to that of Case0 andarereported in Table
1.

As already mentioned in earlier sections, addi-
tional hardware (which is not present in TriMedia)
is necessaryto nullify theexecutionof wrongly pre-
dicted traces. The branch predictor for the VLIW
processorsusedin this work is theoneproposedby
JanHoogerbrugge in [3]. The rateof branch mis-
prediction depends on the implementation of the
branch predictor as well as on the application. If
a lot of branch operations are present in an ap-
plication andthe behaviorof the brancheschange
frequently thenthe rateof branch misprediction is
high for such an application. Resultshave been
providedfor Spec92 benchmarks. We usedSpec92
benchmarks to evaluate our results because these
areadequate to quantify the results for embedded
applications.

As canbeseenin Table1, a gainin performance
is achieved in all the threecases as compared to
decision trees with delayed branchesof TriMedia.
Case1 results have beenreported by JanHooger-
brugge [3] and we have reproducedthem in this
paperfor the sake of comparison with our specu-
lative tracescheduling scheme. Performance gain
in the caseof branch prediction is obviousconsid-
eringthefactthatbranch delay slots arereducedto
zero. Case2 results (shownin column 2 of Table
1) give the theoretical advantageof trace schedul-
ing (unpredictedtraces) over decision treeschedul-
ing. Theseresults are producedto show the effi-
ciency of trace scheduling ascompared to decision
treescheduling. The advantageis obtaineddueto
theremoval of control operationsfrom thebodyof
thetracebecauseof whichtheoperationsaremoved
higher upin thescheduleandissueslotsareutilized
moreefficiently. Decision treeswith branch predic-

Table 1: Performance improvementrelative to delayed branchesin Trimedia for three cases: predicted
branchesin trees,split traces(no branch prediction andbranch prediction in traces.

Scheduling Schemes
Benchmark Predicted Trees UnpredictedTraces Predicted Traces

008.espresso 1.1688 1.2336 1.5387
022.li 1.2266 1.0825 1.3631

023.eqntott 1.1652 1.1348 1.4009
072.sc 1.0913 1.1111 1.3677

Average 1.1629 1.1405 1.4170

tion performbetter thanunpredictedtracesbecause
of the absenceof branch delay slotsin the former.
A significant gain is seenin the caseof predicted
traces (column 3 of Table 1) as compared to pre-
dicted trees.This is dueto two reasons: 1) branch
delayslot reduction and2) theremoval of decision
points from thebody of thetrace becauseof which
ordering constraintsareabsent for scheduling oper-
ations.

The performance achieved by our scheduling
scheme is approximately 1.417 times the original
TriMedia scheduling schemewhich is basedon de-
cision trees. The performanceof predicted traces
is approximately1.2 timestheperformanceof pre-
dicted trees(column 1 and3 of Table1). Thereis
codegrowth due to replication of code for form-
ing traces. However, the performancegain is con-
siderableto offset thedisadvantageof codeexpan-
sion. For longtraces,themisprediction penalty will
behigh. Considering the fact that the intermediate
checkpoints will be beneficial for suchcases, long
traces canbeartificially split into smallertracesin
accordancewith the scheme.Moreover in embed-
dedapplications tracesarenot too long andthis is
trueof thebenchmarkscompiled.

4 Conclusion

The performanceof the VLIW processors can be
improved considerably by dividing the application
into numberof tracesand speculatively schedul-
ing them according to their probability of execu-
tion (obtained by profiling the application). The
performanceobtainedby usis approximately1.417
timestheoriginal TriMedia performanceusing the
schedulingschemepresentedin thispaper. Wehave
shown that by annotating tracesaccording to their

probability of execution (obtainedby profiling the
application) andscheduling themaccording to this
probability the number of mispredictions incurred
is minimal.

References

[1] Jaime H. Moreno et al., “Scalable In-
struction Level Parallelism through Tree
Instructions”, IBM Research Report,
http://www.research.ibm.com

[2] Jan Hoogerbrugge et al., “Instruction Scheduling
for TriMedia,” Journal of InstructionLevel Paral-
lelism,1, 1999.

[3] JanHoogerbrugge,“Dynamic BranchPrediction for
a VLIW Processor”, In Proceedings of the2000In-
ternational ConferenceonParallel Architectureand
CompilerTechniques, Philadelphia, PA, Oct.2000.

[4] JohnR. Ellis, “B ULLDOG: A Compiler for VLIW
Architectures”, PhDthesis,YaleUniversity, 1985.

[5] PeterY. T. Hsu et al., “Highly Concurrent Scalar
Processing”, In Proceedings of the 13th Inter-
national Symposiumon Computer Architecture,
14(2):386- 395, Tokyo, June,1986.

[6] Sanjeev Banerjiaet al., “Treegion Scheduling for
Highly Parallel Processors”,In Proceedings of
Euro-Par’97, pp. 1074-1078, Passau, Germany,
Aug. 1997.

[7] ScottA. Mahalke et al., “Effective CompilerSup-
port for PredicatedExecution using the Hyper-
block”, In Proceedings of the 25th Annual Inter-
national Symposiumon Microarchitecture, pp. 45-
54,Portland,Oregon,USA, Dec.1-4, 1992.

[8] W. W. Hwu et al., “The Superblock: An Effective
Structurefor VLIW andSuperscalarCompilation”,
Journal of Supercomputing, pp.229-248, 1993.

