
Creating safe multi-threaded
applications in C++11

Jos van Eijndhoven
jos@vectorfabrics.com

ACCU conference
Bristol, UK
April 2014



ACCU conference2 |  April 11, 2014

Vector Fabrics’ activities

Tool development Consultancy services Training
and licensing in-house and on-site



ACCU conference3 |  April 11, 2014

Vector Fabrics – the company

Founded February 2007
in Eindhoven, the Netherlands

Currently 15 FTE: 6 PhD, 7 MSc

Recognition

“Hot Startup” in EE Times Silicon 60 list, since 2011

Selected by Gartner as “Cool vendor in Embedded Systems & 
Software” 2013

Global Semiconductors Alliance award, March 2013



ACCU conference4 |  April 11, 2014

You all see the proliferation of multi-core

Galaxy S (2010)
1 processor

Galaxy S2 (2011)
2 cores

Galaxy S3 (2012)
4 cores

Galaxy S4 (2013)
8 cores



ACCU conference5 |  April 11, 2014

Multi-core systems drive programmer 
awareness

Homogeneous multi-core, hardware cache-coherency, one 
shared OS kernel:
Industry proven successful combination, long history

IBM 3084: 4-cpu mainframe (1982)

Silicon Graphics ‘Origin’: 1024-cpu supercomputer (2000)

Intel Pentium D: dual core single chip (2005)

Sun Niagara: 8-core single chip (2005)

ARM Cortex-A9 dual-core on on Nvidia tegra-2 chip (2011)

And more recent on the server side:

Intel Xeon Phi: 60-core single chip (2012)

IBM Blue Gene/Q: 1.6M cores, 1.6PB memory (2012)



ACCU conference6 |  April 11, 2014

Moore’s law versus Amdahl’s law

Computational Capacity

Software 

Performance

# 
o

f
tr

an
si

st
o

rs

Introduction of

multicore

technology

Hardware capabilities
underutilized

Programming
bottleneck

time



ACCU conference7 |  April 11, 2014

Creating parallel programs is hard…

Edward A. Lee, EECS professor at U.C. Berkeley:

“Although threads seem to be a small step from 
sequential computation, in fact, they represent a huge 
step. They discard the most essential and appealing 
properties of sequential computation: understandability,
predictability, and determinism.”

Herb Sutter, ISO C++ standards committee, 
Microsoft:

“Everybody who learns concurrency thinks 
they understand it, ends up finding 
mysterious races they thought weren’t 
possible, and discovers that they didn’t 
actually understand it yet after all”



ACCU conference8 |  April 11, 2014

Problems, anyone?

Toyota is recalling 1.9 million of its top-selling 
Prius hybrid cars because of a software fault 
that may cause the vehicle to slow down 
suddenly
http://www.bbc.com/news/business-26148711

Nissan recalls some Infiniti Q50 sedans with 
steer-by-wire software glitch
http://www.autonews.com/article/20131216/RETAIL05/131219890/nissan-recalls-
some-infiniti-q50-sedans-with-steer-by-wire-software#

Volvo recalls 2014 models to correct software glitch
http://uk.reuters.com/article/2013/09/05/uk-autos-volvo-recall-idUKBRE9840U320130905

Recall Roundup: Software Glitches Force 
Several Recalls
http://autos.jdpower.com/content/blog-post/AuY6uUi/recall-roundup-software-
glitches-force-several-recalls.htm

2013 Ram 1500 Recalled For Stability Control 
Software Glitch
http://www.thecarconnection.com/news/1085613_2013-ram-1500-recalled-for-
stability-control-software-glitchDelhi-bound AI Dreamliner lands in Kuala 

Lumpur due to software glitch
http://ibnlive.in.com/news/delhibound-ai-dreamliner-lands-in-kuala-lumpur-due-to-
software-glitch/450184-2.html

Bug Sends Space Probe 'Spinning Out of 
Control,' NASA Says
http://www.weather.com/news/science/space/deep-impact-spacecraft-
20130910

http://www.bbc.com/news/business-26148711
http://www.autonews.com/article/20131216/RETAIL05/131219890/nissan-recalls-some-infiniti-q50-sedans-with-steer-by-wire-software
http://uk.reuters.com/article/2013/09/05/uk-autos-volvo-recall-idUKBRE9840U320130905
http://autos.jdpower.com/content/blog-post/AuY6uUi/recall-roundup-software-glitches-force-several-recalls.htm
http://www.thecarconnection.com/news/1085613_2013-ram-1500-recalled-for-stability-control-software-glitch
http://ibnlive.in.com/news/delhibound-ai-dreamliner-lands-in-kuala-lumpur-due-to-software-glitch/450184-2.html
http://www.weather.com/news/science/space/deep-impact-spacecraft-20130910


ACCU conference9 |  April 11, 2014

Multi-threading: non-deterministic behavior



ACCU conference11 |  April 11, 2014

Learning raises the awareness of complexity

Provides good insight in C++ concurrency

C++11 standardizes concurrency primitives 

Warns for many many subtle problems

The authorative description

(4th edition)

Apparently requires

1300+ pages...

Safe concurrency by defensive design 

Shows that Java shares many concurrency 

issues with C++



ACCU conference12 |  April 11, 2014

HOWTO: Parallelization of sequential C/C++

Analyze behavior of sequential program:
Establishes functional reference, deterministic behavior

Look for loops that provide good opportunity:

Contain a significant amount of all work

Loop-carried dependencies seem manageable…

Make an inventory of loop-carried dependencies
(group by object, or by class type)

Do a ‘what if resolved’ performance estimate…

…maybe for different target architectures

Verify the correctness of your concurrent implementation



ACCU conference13 |  April 11, 2014

PAREON: performance analysis

Loop-carried dependencies hinder 
parallel execution of loop iterations

Other performance statistics:
Iteration counts, cache penalties

View on call tree with 
relative workload



ACCU conference14 |  April 11, 2014

PAREON: data dependency analysis

Detailed info on loop-carried dependencies: 
producer & consumer source locations,
allocation location, symbol name



ACCU conference15 |  April 11, 2014

PAREON: Schedule data dependencies

Obtain a preview on a potential parallelization
assume synchronization on complex dependencies

Estimate multi-thread fork/join overhead



ACCU conference16 |  April 11, 2014

PAREON: Loop statistics

Histogram on execution time per 
iteration: wide variation is not nice….



ACCU conference17 |  April 11, 2014

WHAT IF application is partially parallelized?

Some parallelization was done before using Pareon

Or some parallelization was done on Pareon’s advice,
but we want to look for more opportunities…

Tracing load-store dependencies becomes harder!

Obtaining the inter-thread load-store dependencies is OK, but:

Actual load-store interleaving over time (mutual ordering) is 
schedule-dependent (is non-deterministic)

How to decide whether observed inter-thread data exchange is 
good or wrong?

C++11 comes to rescue! 



ACCU conference18 |  April 11, 2014

Pre-11 C/C++ constructs for threading

Three basic primitives, and some OS-level functionality

Volatile variable declarations:
force compiler load/store generation, limit compiler re-orderings

Memory fence operations:
force load/store ordering at runtime in the memory system

Atomic operations:
indivisible read-modify-write (increment, test-and-set)

Higher-level abstractions (semaphores, condition variables) that 
include OS and kernel support  thread sleep and wakeup

Only ‘volatile’ is standardized in C/C++. Originally designed for I/O to 
hardware.

Posix thread library in 1995, fences/atomics are compiler specific intrinsics



ACCU conference19 |  April 11, 2014

Pre-11 C/C++ constructs for threading

Creation of multi-threaded programs:

The C/C++ compiler performs strong optimizations that are only 
valid in single-threaded  execution mode

‘volatiles’ and ‘fences’ are required, often forgotten, clutter your 
program, degrade performance beyond need.

This forgotten leads to rarely occurring bugs, which are not 
reproducible.

And: programs that seemed correct on X86, appear buggy on ARM



ACCU conference21 |  April 11, 2014

1995-2011 C/C++ constructs for threading

Three basic primitives, and some OS-level functionality

Volatile variable declarations:
force compiler load/store generation, limit compiler re-orderings

Memory fence operations:
force load/store ordering at runtime in the memory system

Atomic operations:
indivisible read-modify-write (increment, test-and-set)

Higher-level abstractions (semaphores, condition variables) that 
include OS and kernel support  thread sleep and wakeup

Get rid of all of this 15 years of programming practice

bold move by the C++11 committee!



ACCU conference22 |  April 11, 2014

C11/C++11 parallel programming

Creation of multi-threaded programs:

The C/C++ compiler will always assume multi-threaded access 
to variables with global scope. This inhibits some optimizations.
(C++11 has no ‘volatile’ to denote inter-thread data exchange)

Atomic operations are overloaded with memory fence
behaviors. These are the basic building blocks for inter-thread 
synchronization.

If the programmer creates SC-DRF programs, then the system 
ensures correct (deterministic) behavior!

Sequentially Consistent Data Race Free

Finally: multi-threaded behavior is properly specified for C/C++ !!



ACCU conference23 |  April 11, 2014

Satisfy Data Race Free

Sufficient condition to satisfy ‘Data Race Free’:

Whenever a variable is accessed by operations from two threads:

Both operations are loads -or-

Both are executed in a well-defined order

Inter-thread order requires explicit memory barriers.

Carefully chosen barrier semantics should limit performance 
penalties: impose weak ordering constraints



ACCU conference24 |  April 11, 2014

Building ordering relations

Atomic store flag
mem barrier release

Thread 1 Thread 2

Atomic load flag
mem barrier acquire

Store data

Load data

“happens before”

“happens before”

“synchronizes with”

Local order relations allow to extract global ordering (transitive closures)



ACCU conference25 |  April 11, 2014

If you want to learn more…

3hr presentation at “C++ and Beyond”, Aug. 2012



ACCU conference26 |  April 11, 2014

Example: ping-pong buffer

std::atomic<int> flag;

int bucket;

void consume() { // thread A

while (true) {

while (!flag.load(std::memory_order_acquire))

; // busy wait

int my_work = bucket;

flag.store(0, std::memory_order_release);

consume_stuff( my_work);

}

}

void produce() { // thread B

while (true) {

int my_stuff = produce_stuff();

while (flag.load(std::memory_order_acquire))

;// busy wait

bucket = mystuff;

flag.store( 1, std::memory_order_release);

}

}



ACCU conference27 |  April 11, 2014

Example: ping-pong buffer

std::atomic<int> flag;

int bucket;

void consume() { // thread A

while (true) {

while (!flag.load(std::memory_order_acquire))

; // busy wait

int my_work = bucket;

flag.store(0, std::memory_order_release);

consume_stuff( my_work);

}

}

void produce() { // thread B

while (true) {

int my_stuff = produce_stuff();

while (flag.load(std::memory_order_acquire))

;// busy wait

bucket = mystuff;

flag.store( 1, std::memory_order_release);

}

}

O
rd

e
re

d
 d

a
ta

 d
e

p
e

n
d

e
n

c
y
 (

R
a

W
)



ACCU conference28 |  April 11, 2014

Example: ping-pong buffer

std::atomic<int> flag;

int bucket;

void consume() { // thread A

while (true) {

while (!flag.load(std::memory_order_acquire))

; // busy wait

int my_work = bucket;

flag.store(0, std::memory_order_release);

consume_stuff( my_work);

}

}

void produce() { // thread B

while (true) {

int my_stuff = produce_stuff();

while (flag.load(std::memory_order_acquire))

;// busy wait

bucket = mystuff;

flag.store( 1, std::memory_order_release);

}

}

O
rd

e
re

d
 d

a
ta

 d
e

p
e

n
d

e
n

c
y
 (

R
a

W
)

O
rd

e
re

d
 a

n
ti
 d

e
p

e
n

d
e

n
c
y
 (

W
a

R
)

(?)



ACCU conference29 |  April 11, 2014

Learn from this simple example

Such low-level synchronization is still hard and error-prone.

You should re-use higher-level functionality offered through 
libraries.

Have clear semantics through well-known design patterns

Checking for SC-DRF should be a tool responsibility. But, we 
are not there yet…



ACCU conference30 |  April 11, 2014

Example with datarace (BAD!)

int main()

{

// create an empty bucket

std::set<int> bucket;

// Use a background task to insert value '5' in the bucket 

std::thread t([&](){ bucket.insert(5); });

// Check if value '3' is in the bucket (not expected :-)

bool contains3 = bucket.find(3) != bucket.cend();

std::cout << "Foreground find: " << contains3 << std::endl;

// Wait for the background thread to finish

t.join();

// verify that value '5' did arrive in the bucket

bool contains5 = bucket.find(5) != bucket.cend();

std::cout << "Background: " << contains5 << std::endl;

return 0;

}



ACCU conference31 |  April 11, 2014

Issues with faulty std::set example

C++ STL containers are not thread-safe for write access!
Programmers would know to not create such code if they read 
their documentation

If your job is to create concurrency in an existing large code 
base (>100K lines), code inspection would easily overlook this
(the read and write could be far apart, in different files)

The program seems to run fine: the bug reveals itself rarely

Today’s data-race checking tools seem to miss this one



ACCU conference32 |  April 11, 2014

Conclusion

C++11 obtained a properly defined memory model and threading 
primitives, finally allowing to create portable programs!

Bold change: Atomics and volatile became totally different.
Some compiler optimizations are now illegal.

Creating deterministic (SC-DRF) programs remains challenging.

The programmer community needs more and better tools to 
improve productivity and bridge the gap with multi-core hardware



Thank you

Check www.vectorfabrics.com for a free demo on concurrency analysis

http://www.vectorfabrics.com/

