
Flexible Block–Multiplier Generation

H.M.A.M. Arts, J.T.J. van Eijndhoven and L. Stok*
Design Automation Section, Eindhoven University of Tech, Eindhoven, The Netherlands

*Computer Science Department, IBM TJ Watson Research Center, Yorktown Heights, NY 10598

Abstract
In a high level synthesis environment there is a strong

need for flexible module generators. For the generation of
regular structures efficient dedicated module generators
can be built. This paper describes the structure of a ’block–
multiplier’, which features a wide range of area–time trade-
offs maintaining efficiency. The structure makes it possible
to implement a fully serial or a fully parallel multiplier and
many combinations in between. A new concept for the Car-
ry–Hold circuitry plays a key role. The theoretically derived
formulas which describe the relations between the area, tim-
ing and bitwidth of this multiplier structure are verified by a
large number of experiments.

1 Introduction

High level synthesis tools are concerned with the task of
transforming an algorithmic behavioral specification of the
system to the primitives of a structural representation. These
primitives are often called modules. To meet the constraints
concerning functionality, area, timing and bitwidth as dic-
tated by the high level synthesis, a large variety of modules
has to be available. These modules can be retrieved from a
library but the great number of combinations makes it im-
practical to store all possible combinations. A more promis-
ing approach is to use module generators generating mod-
ules with the required functionality meeting the constraints
as closely as possible.

There are several possibilities to generate modules on the
fly. The first is design by hand. However, this will usually
take a lot of time and does not fit in the design philosophy of
the synthesis systems to shorten the design cycle. A more
automated approach is described in [1]. The module genera-
tor in the Cathedral environment (MGE) is mainly directed
by the designer. The designer specifies both structural and
topological information at the same time. Construction rules
specify how the real layout of the module must be made
starting from the topology. However, this still requires con-
siderable design time.

Several other approaches have used a logic synthesis sys-
tem [2][3][4] to generate the modules. This works fine for
irregular structures, but logic optimization did not yet
succeed to take advantage of the regular structure of specific
modules. An example of such a module is a multiplier. In the
past a large number of multipliers have been developed. Ex-

FA

Figure 1: Shift and Add Multiplier

x5 x4 x3 x2 x1 x0y5 y4 y3 y2 y1 y0

z11z10 z9 z8 z7 z6 z5 z4 z3 z2 z1 z0

FAFA FA FAFA

amples are the shift/add multiplier [5][6], the serial–parallel
multiplier [7], the carry–save multiplier [8] and other paral-
lel architectures [9]. This paper describes a special structure
for a multiplier, which is very suitable for automatic genera-
tion. The structure of the ’block–multiplier’ allows a large
number of implementations with a wide spread in both the
area and the time dimension.

The next section describes some backgrounds in multi-
plication. Section 3 describes the concepts and the structure
of the block–multiplier. Section 4 gives some experiments
and results.

2 Conventional Multipliers
The most common multiplier is the Shift and Add Multi-

plier [5] [6]. Consider two binary unsigned integer words X
and Y and their binary representation :

X� �
Nx�1

i�0

xi2i Y� �
Ny�1

j�0

yj2j (1)

The product �� � � � can be written as:

Z� �
Nx�1

i�0

xiY2i � (���((xNx�1Y)2� xNx�2Y)2� ���)2� x0Y(2)

We may now compute Z by the recurrence:
D0 � 0 Di�1 � Di2�1� xiY Z� DNx2

Nx�1(3)
In each step of the recurrence one bit of X is multiplied (a
simple and–operation) with Y and added to the intermediate
result Di which is shifted one bit. Figure 1 shows an imple-
mentation of the Shift and Add multiplier for Nx = Ny = 6.
For a (Nx, Ny)–bits multiplier it takes Nx clock–cycles to
complete the multiplication, the delay of the combinatorial
circuit (which determines the maximum clock frequency) is
approximately: NyδFA (δFA is the delay of a fulladder, the
delay of a register is negligible). So the multiplication time

Figure 2: Normal Block
 multiplication

Figure 3: Block Multiplica–
 tion using Carry Hold

CH 11 11 11
x 11 11 11

00 1001 (0)
1001 (1)

00 101101
1001 (2)

00 10111101
1001 (3)

01 10100001
1001 (4)

10 100110001
1001 (5)

00 1110110001
1001 (6)

01 1101000001
1001 (7)

10 10110000001
1001 (8)

00 111110000001

11 11 11
x 11 11 11

1001 (0)
1001 (1)
101101

1001 (2)
10111101

1001 (3)
11100001
1001 (4)

101110001
1001 (5)
1110110001

1001 (6)
10001000001
1001 (7)

11010000001
1001 (8)
111110000001

is NxT (1/T is the clock frequency) with T ≥ NyδFA. The cost
of a Shift and Add Multiplier is: (3Ny + 2Nx)γFA (the cost of a
fulladder, γFA, is assumed to be equal to the cost of a regis-
ter).

Another implementation leads to the fast but large Carry
Save Multiplier [8]. The multiplication of two 4–bit binary
numbers can be written as:

X3 X2 X1 X0
Y3 Y2 Y1 Y0
P30 P20 P10 P00

P31 P21 P11 P01
P32 P22 P12 P02

P33 P23 P13 P03
Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

where Pij = Xi ∧ Yj. The addition of all Pij terms can be done in
an array of fulladders. The delay of this type of multipliers
is: (Nx + Ny – 1)δFA. But since the circuit is combinational
the multiplication can be done in one cycle and thus:
T ≥ (Nx + Ny – 1)δFA. However, the cost is: (Nx – 1)Ny γFA

plus (2Ny + 2Nx)γFA if X, Y and Z–registers are accounted as
in the shift and add case.

3 The Block Multiplier

A combination of both methods leads to a flexible archi-
tecture in which a suitable selection can be made among dif-
ferent implementations with a wide variety in the number of
clock cycles, delay and area.

3.1 Basic Circuit

The basic idea is to divide the input words in blocks, and
to multiply each block of the first word with each block of
the second word in a fast Carry Save Multiplier and add
every result, with a proper offset, to the result register. Fig-
ure 2 shows an example of the multiplication of two 6–bits
words each divided in 3 blocks of 2 bits.

Carry Save
Multiplier

Figure 4: Architecture of the block multipli-
er

. . . .

X–register Y–register

nx ny

nx+ny

Adder

max(nx+ny, kxnx)

. . . .

max(nx+ny, kxnx)

Z–register

Cout

Contr

. . . .

We can write this principle again in a recurrence relation.
Consider two binary integer words X (with Nx bits) and Y
(with Ny bits), divided in resp. kx and ky blocks of resp. nx
and ny bits (so Nx = nxkx and Ny = nyky):

�� �
����

���

���
���� � � � � � � � ��� �

�	��

���

���
��	 (4)

The product �� � � � can be computed by the relations:

Di�1 � �2
�nx(Di � Xi%kxYi�kx

) if (i � 1)%kx �

2(kx�1)nx�ny(Di � Xi%kxYi�kx
) if (i � 1)%kx �

Z � 2nykyDkxky (D0 � 0) (5)

During every step of the recurrence the result from the Carry
Save Multiplier is added to the intermediate result Di and
shifted. The result from the Carry Save Multiplier has bit-
size nx + ny, but the result Di , to which it has to be added, can
be larger. We can see in the example of figure 2 that during
step 3 and 6 a 4–bit adder would have been too small. Using
(5) we calculate the required size of the adder: For every step
i = akx – 1 the following add and shift operation is done:
Dakx � 2(kx�1)nx�ny(Dakx�1� Xkx�1Ya�1) (6)
And in the next step
Dakx�1 � 2�nx(Dakx� X0Ya) (7)
Any product XiYj has nx + ny bits, so the integer part ofDakx,
see (6), has:
(kx� 1)nx� ny� (nx� ny) � Nx bits. (8)

The adder therefore has to add over, see (7), max(nx + ny,
Nx) bits in the Di result. Figure 4 shows the architecture. The
word in the X–register has to be shifted every step over nx
bits. The word in the Y–register has to be shifted over ny bits
after every kx steps. The Di result in the Z–register, which
has to be cyclic, has to be shifted over nx bits every step, but
after every kx steps it has to be shifted back over
(kx – 1)nx – ny bits. When the multiplication is done the re-
sult Di has to be at the proper position in the Z–register.
From the last equation of (5) ,we see that the add operation
has to be done on the Z–register with an offset of nyky bits.

The area and delay of all used modules are shown in table

1. The controller is just a modulo kx counter, with its internal
reset signal as an output, and therefor needs a logkx–bits reg-
ister plus a logkx–bits incrementor. The delay of the multi-
plier is only determined by the delay of the adder, because
the signals from the CSM appear with the same speed at the
inputs of the adder as the carry ripples through the adder.

3.2 Carry Hold Circuit

In most cases (Nx > nx + ny) the performance of this mul-
tiplier is affected by the extra size and delay of the adder. To
prevent this a Carry Hold principle is introduced. Figure 3
shows an example of the Carry Hold principle. A 2–bit shift
register is used for the Carry–Hold. The carry out of the
4–bit adder is shifted in the Carry Hold Register (CHR) on
every step in which it cannot be written to the appropriate bit
in the Z–register, because a result may already have been
written to that place, i.e. on step (0,) 3 and 6.

A carry–out will be written to the CHR if it cannot be
written directly to the result Di . Every akx steps the integer
part ofDakx

has Nx bits, on step akx + j (0 ≤ j < kx) this inte-
ger part still has Nx – jnx bits, while the result of the addition
has nx + ny bits. A carry–out of this addition may be written
directly into the intermediate result if nx + ny ≥ Nx – jnx
which is true if j ≥ kx – ny/nx – 1. A carry–out produced on
0 ≤ j0 < kx – ny/nx – 1 has to be shifted in the CHR and
shifted out to the carry–input of the adder on j0 < j1 < kx,
when the lowest bit of the addersum will be written to the
same bit in the result Di as to which the carry–out should
have been written, i.e.: (j1 – j0)nx = nx + ny ⇒ (j1 – j0) =
1 + ny/nx. The CHR has to be a (1 + ny/nx)–bit shift register
(thus ny should be a multiple of, or equal to, nx).

Figure 5 shows the architecture of the block multiplier
using the Carry Hold principle. A multiplexer for the carry–
out and the CHR have been added, and the controller has one
output more. Table 2 gives the area and delay of CHR–block
multiplier. The controller has become slightly larger. It has
to give a ”carry to Z–register” signal for every count
j ≥ kx – ny/nx – 1 (on j = kx – 1 there cannot be a carry–out so
it does not matter where it is written to), the cost to realize
this extra signal will not exceed logkx γFA.

The advantage of the Carry Hold principle is an improve-
ment of (Nx –nx –ny)δFA in the delay and an area decrease of
(Nx –ny –nx –ny/nx –1–logkx)γFA.. For example a 32–bits

Table 1: Area and delay of a block–multiplier
module area (in γFA) delay (in δFA) cycles
X–reg Nx –
Y–reg Ny –
CSM (nx – 1)ny nx + ny
Adder max(nx + ny, Nx) max(nx + ny, Nx)
Z–register Nx + Ny –
Controller 2log kx –
Total 2Nx+2Ny+nxny–ny+ max(nx+ny, Nx) kxky

max(nx+ny,Nx)+2logkx

Carry Save
Multiplier

Figure 5: Architecture of the block multiplier
 with Carry Hold Register

. . . .

nx

X–register Y–register

ny

nx+ny

Adder

nx+ny

. . . .

nx+ny

Z–register

Cout
Contr

. . . .

CHR

block multiplier with both inputs divided in 4 blocks will
have a delay of 32 δFA if no CHR is used and 16 δFA if a CHR
is used. The area will reduce from 220 γFA to 208 γFA.

Figure 6 shows the estimations based on table 1 and table
2 for a (12,12)–bit multiplier divided in all possible blocks.
It shows the area (in γFA) versus the multiplication time
(kxkyδFA). For all configurations with nx + ny ≥ 12 or
nx = ny = 1 no CHR is needed so table 1 is used. The multi-
pliers with ny = 12 do not need a controller either, which re-
duces their area extra by 2logkxγFA. For the multipliers with
nx = 1 the result of the CSM has ny bits instead of nx + ny, so
the adder has one stage less. A compensation for these con-
figurations is used: –δFA for the combinational delay
(–12kyδFA for the multiplication time) and –γFA for the area.
The configuration with nx = ny = 12 is pure combinational
and therefor is represented without registers. No adder is
needed either.

4 Results
The Carry Hold–block multiplier is implemented in a

module generator program. Figure 7 shows the results for all
(12,12)–bit multipliers. The area and delay values are
derived by processing the module generator output (net-
work lists using logic gates like nand, nors, invertors and
flip–flops) through the MentorGraphics software. The
solid line connects those configurations which have increas-
ing multiplication time with decreasing area. The dotted line
gives the curve for ”area x multiplication time = Constant”

Table 2: Area and delay of a CHR–block–multiplier
module area (in γFA) delay (in δFA) cycles
X–reg Nx –
Y–reg Ny –
CSM (nx – 1)ny nx + ny
Adder nx + ny nx + ny
CHR 1 + ny/nx –
Z–register Nx + Ny –
Controller 3log kx –
Total 2Nx+2Ny+nxny+nx+ nx+ny kxky

ny/nx+2+3 logkx

0

50

100

150

200

250

300

50 75 100 125

1,1

1,2

1,3

2,2 1,4

1,6

1,12 2,4

3,3
2,6

2,12

4,4
3,6

3,12
6,6

4,12
6,12

Figure 6: Area/time estimation for a (12,12)–bit multiplier

12,12

(without
registers)

area (γFA)

nx,ny

multiplication
time
 (δFA)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

500 700 900 1100 1300 15

1,2

1,3

2,2

1,4

1,6

1,12

2,4

3,3

2,6

2,12

4,4
3,6

3,12

6,6

4,12

6,12

Figure 7: Area/time for a (12,12)–bit multiplier
equivalent gates

(without
registers)
12,12

1,1

multiplication
time
(ns)

i.e. A = 500 (1/T + 1). An offset of 500 for the area is used
because that is the number of equivalent gates required for
the X, Y and Z–registers.

Figure 6 and 7 resemble very well. In a module generator
environment, where the area and delay of all gates are
known and where the several multiplexers can be taken into
account, even better estimations can be made.

Giving a clock cycle T, a selection of a multiplier with
suitable area and number of cycles can be made using figure
8. It shows the area versus the number of cycles. Each (nx,ny)
multiplier is connected with a line to a scale which repre-
sents the combinational delay. For example, if a clock cycle
of 200 ns is used, the (3,6) configuration is the fastest config-
uration which can be used: it uses 8 clock cycles. But if the
clock cycle is 250 ns, the (2,12) configuration can be used,
which needs only 6 clock cycles and has less cost.

1

10

100

500 750 1000 1250 1500

1,1

1,2

1,3

2,2
1,4

1,6

1,12
2,4
3,3

2,6

2,12

4,4 3,6

3,12

6,6

4,12

6,12

12,12

Figure 8: Area/cycle and delay of a (12,12)–bit multiplier
equivalent gates

(without
registers)

100

0

200

300

400

Tclock (ns)clock
cycles

5 Conclusions

A multiplier structure has been described which leads to a
very efficient implementation in a module generator envi-
ronment. The structure provides the flexibility and predict-
ability in both area and delay required to be useful in an au-
tomated synthesis environment. It allows configurability
from bit–serial to parallel array multiplication. For large ex-
amples the block multiplier will be substantially faster then
a shift and add implementation, using only slightly more
area.

6 References

[1] De Man H., J. Rabaey, and L. Claesen, ”Cathedral–II A sili-
concompiler for digital signal processing”, Computer, De-
cember 1986. pp. 13–25.

[2] Camposano, R. and R.K. Brayton, ”Partitioning before logic
synthesis”, Proc. of the IEEE International Conference on
Computer Aided Design 1987. pp. 324–326.

[3] Brayton, R.K., et al.”MIS: A multiple level logic optimization
system”, IEEE Trans. on comp. aided design, Vol. 6, 1987.

[4] DeMicheli, G. and D.C. Ku,”HERCULES: a system for high
level synthesis”, Proceedings of the 25th Design Automation
Conference, June 1988. pp. 483–488.

[5] Davio, M. and J.–P. Deschamps, A. Thayse, ”Digital Systems
with algorithm implementation”, John Wiley, New York, 1983.

[6] Hill, F. and G. Peterson, ”Digital Systems hardware organiza-
tion and design”, John Wliley, New York, 1987. pp. 542–550

[7] Chu, Y, ”Digital Computer Design Fundamentals”, McGraw–
Hill , New York, 1962

[8] Braun, E. L., ”Digital Computer Design”, Academic Press,
New York, 1963.

[9] Maden, B. and C.G. Guy, ”Parallel Architectures for High
Speed Multiplication”, IEEE International Symposium on
Circuits and Systems,, 1989. pp.142–145.

