Doubly Folded Transistor Matrix Layout

Lukas P.P.P. van Ginneken, Jos T.J. van Eijndhoven, Jos A.H.C.M. Brouwers

Design Automation Section, Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
tel: 31-40-473710, fax: 31-40-455925

ABSTRACT - We present a flexible module generator that
lays out transistor net lists. New is the formulation of this
layout problem as a two dimensional folding problem. The

folding algorithm uses an elegant hierarchical divide and -

conquer technique. The aspect ratio and pin positions can
be controlled within a wide range, while the area remains
approximately constant. Accurate control of the aspect
ratio and pin positions is important in combination with top
down floor planning. The mask generator uses a smail
library of adaptable transistors with parameters like
length, width, positions of the terminals, and an optional
diffusion implant. Compared to other automated layout
styles, the new module generator makes smaller and more
flexible layouts. The layout of the modules can be
customized with respect to all major design parameters:
function, speed, design rules, aspect ratio and pin positions.

1. INTRODUCTION

Stepwise refinement is an approach for the design of complex
systems. It implies the adaptation of smaller sub structures to a more
giobal structure that was designed earlier. In the design of VLSI the
approach leads to floor planning before module design [7]. From the
floor plan important design parameters such as the aspect ratio of the
modules and the positions of the terminals can be derived. The best
aspect ratio of the blocks can be computed in polynomial time after
the floor plan topology has been determined [9]. In an automated
environment module generators must be capable of taking these
parameters into account.

A good module generator must be able to design a large class of
modules for different design parameters [12]. To have a maximum
of flexibility in generating different circuits, the functional
specification of the circuit is given as a net list of transistors. The
same problem can be solved with the gate matrix layout style [6, 8],
but we do not require transistors with the same gate signal to be on
the same polysilicon strip. This requirement results in complex
optimization problems and hampers efficient compaction. By
dropping this Ttequirement we arrive at a more clegant and
symmetrical optimization problem: the two dimensional folding
problem. Like the gate matrix style, this new layout style can handle
any circuit of transistors, while the transistor sizes may vary. In
addition, it can control the shape and pin positions accurately.

The two dimensional folding problem is the problem of assigning
horizontal and vertical strips to rows and columns. The strips have
an interconnection pattern that must be realized, but the order of the
connections is unconstrained. Of course the strips in the same row
respectively column must not overlap. The vertical strips represent
the signal nets, while the horizontal strips represent the transistors.

The two dimensional folding problem was first posed in [3] and a
simulated annealing solution was proposed. An improved simulated
annealing algorithm was described in {11]. Our solution to this
optimization problem uses a hierarchical divide and conquer
approach [10] similar to the approach of [1] to placement and
routing. The algorithm allows for a large amount of freedom in
choosing the aspect ratio and pin positions. Different amounts of
folding in both dimensions are used to get the desired aspect ratio.

2. THE CIRCUIT LAYOUT PROBLEM

The circuit to be layed out is represented as a net list: acircuit Cisa
bipartite graph C(T,N,P). T is the set of transistors, N is the set of
signal nets and P is the set of pins. The set of pins PcTxN contains
the edges of the graph, which stand for the transistor terminals.

The folding algorithm assigns the signal nets to columns and the
transistors to rows, such that they do not overlap. The signal nets are
implemented in metal, while the transistors use diffusion and
polysilicon. A couple of configurations of the pins of the transistor
are possible. The gate can be the middle pin, or it can be one of the
other two (see fig.1). Another possibility is that the gate is connected
to the source or the drain.

Since the folding algorithm assumes that all transistors are equally
high, it is desirable that the transistors have a small and almost
uniform height. The height of the transistors should preferably be
close to the width of a horizontal polysilicon or diffusion wire.
Notice that any pin order of the transistor can be realized. This leaves
total freedom to the folding algorithm to choose the order of the
signals.

signals

il

~T0w 2

N

-- -1~ cmecb-row 1

Figure 1. Transistors assigned to rows

We formally state the circuit layout probiem as follows: The circuit
is to be realized on a grid of rows and columns. The set of grid points
is represented by ZxZ. The layout of a circuit is determined by a net
assignment function ¢: N—Z that assigns pets to columns and a
transistor assignment function y: T—Z that assigns transistors to
rows. Let v(t} denote the set of connected transistors of net n:
v(n) = {te T|(t,n)e P}. The span ¢ of a net neN is an interval of



rows defined as o(n) = [MiN vy Y(t), MaXie vy W(t)]. The spans of
nets that are assigned to the same column are not allowed to overlap:

Yn.nen [6(ri)=0{(n;) => o{(m)no(m)=2]

Since the problem is symmetric the same goes for the transistors:
v(t) represents the set of nets connected to transistor t and of(t)
represents the span of a transistor. In the remainder of this paper this
duality will not be explicitly mentioned. The objective of the folding
algorithm is to find a valid ¢ and y subject to some cost function, for
instance area.

The pin positions to the periphery are handled by introducing four
pseudo strips. Each of these strips is assigned to a predetermined
side of the matrix during the folding. In this way the pins are forced
to the correct side. In addition to that it is possible to enforce certain
constraints on the order of the peripheral pins.

We may classify gate placement, which has been shown to be NP-
complete [S], as a special case of two dimensional folding.
Therefore, the assumption that two dimensional folding is at least
NP-complete seems valid, although proof is not provided here.

3. THE FOLDING ALGORITHM

The algorithm that was used is a divide and conquer heuristic {10].
The design is repeatedly subdivided by straight orthogonal cutting
lines. After each vertical division it is decided which nets are placed
to the right of the cutting line and which are placed to the left. After
each horizontal division the transistors are partitioned into two
groups. After the kth horizontal cut the transistors are partitioned
into k+1 subsets Tg.. Ty.

Kk
T= ;}oTi VT",T, [TiﬁTj=®]

Similarly the nets are partitioned into (+1 subsets Np,..,N; after [
vertical cuts. The sets are ordered in the grid space, that is, the sets
imply a constraint on the functions ¢ and y.

Ve, he N, [i<] => ¢(n)<¢(h)]
Ny No N3 Ng Ns Ng N2 Ng

[ alntie Badind mlbadl: Shiesf hathnlh Minfier Sl sty |
t ) T 1] 1 1 3 i t
A A A L
1] 1 1 1 1 + 1 1 L
F=i" " Cr T TTTIT T T
1 1] t ] ] i 1 i
: ] t 1 ] 1] ! 1 IT5
H ] ] 1 ] ¥ t 1 ¥
4

cut k
Ts
: 1 ] 1 b : : 1 :T2
FeATTETYTTETTYTTITTIrT
L} ¥ 1 H i ) H ] iT‘
Cedeabhad o ctandloJdo JLod

Figure 2. A 2xn subproblem

When a subset N; is partitioned into two subsets N; and Ni.q this
implies a restriction of ¢ (although a solution remains always
possible). The index of remaining sets N; with j>i increases by one.
As the exact assignment has not yet been determined the span of a
net will be defined as

-§(n)=[minfi | Tinv(n)<>@}, max{i | Tinv(n)<>@} ]

To make an estimate of the resulting size of the array, and to
evaluate the consequences of cutting line decisions, we use bounds
on the number of rows needed for a subset of transistors, or the
number of columns needed for a subset of nets. The number of
columns needed is equal to the number of overlapping nets, In the
worst case all neis that can overlap actually will overlap. The
maximum number of columns needed for a subset of nets is therefore
given by

H(N;} = max #{ne N; | jeS(n)}
i

Notice that this is the exact number of columns if 0=G. A lower
bound for the number of columns is determined by the number of
nets that cross horizontal boundaries:

S8(N;) = mjax #neN; | jeo(n)apried(n)}

Since the terminals of a transistor are not aliowed to overlap there is
another lower bound:

ANi) = maxi#(v(hinNi)

These upper and lower bounds can be used to estimate the final size
of the array. A dimension of the matrix is estimated as the mean of
the upper and lower bounds. The area can be estimated as

£ max(S(N;), y(NDH(Ny) -k max(3(T;), w(Ti))+uT;)
5> > ME > )

i=0 =0
When a cut is made the transistors or nets are partioned into two
subsets. The heuristics transfer strips between the two subsets while

trying to improve the area. The heuristic uses  a control method
commonly used in mincut algorithms [4].

The shape is controlled by selecting the orientation of the next
cutting line. A veitical cutting line tends to make the array wider and
lower, a horizontal line makes the array higher and narrower. The
orientation is chosen such that the estimated array size is corrected in
the direction of the desired aspect ratio. This is an accurate control
mechanism because the repeated cuts allow for corrections that
gradually become smaller.

4. ASSIGNMENT WITHIN PARTITIONS

When the following criterion is satisfied, further cuts cannot improve
the result.

Vsemong MS)=1 v 1(S)=max(1(S),5(8))]

When a subset S does not have mu({S)=1 then the elements of this
set do not have a completely determined assignment function. An -
assignment with a minimum number of rows or columns can easily
be constructed using a left edge algorithm. The left edge algorithm
places two nets with an overlapping span on different columns.

Yin.nee N [6(T11)MB(n2 J=3—0(n1)24(n2)]

This assignment realizes the upperbound p. Notice that it is now
possible to exchange the columns within a subset without creating
any overlaps between horizontal strips. This freedom can be used to
further optimize the net assignment with respect to another criterion.

When extra long or extra wide transistors are used, it is advantageous
if enough space is available between the pins to aliow a horizontal
orientation. In fig.3 the transistor to the left does not have enough
space to lie flat. To the right, enough space between the terminals is
created for a flat implementation by exchanging two signal nets.

Figure 3. The inﬂuence of exchanging two signals

Let for each transistor t the nets connected to gate, drain and source
be {g,dh,Sy)=v(t) and let w(t),|(t) denote the width and length of t.
The number of columns needed by transistor t is

max(w{thos, l{f)+es) ’
p T

S(t)=entier{ ).



p is the metal pitch and €4 and Cp are constants. An assignment that
allows sufficient room for all transistors satisfies:

Ve [§(st)-0(di) 1 28()

Such a perfect assignment may not always be possible. In that case a
solution is preferred that leads to a small number of violations. Ina
vertical orientation the size of the transistor determines the height of
the row. A violation has a larger influence when the size of the
transistor is larger. We therefore optimize the sum of sizes of the
transistors that cannot be placed horizontally:

S(t)
IS0 | 6(s-0(d1}

Then columns are reordered to allow more horizontal transistors.
This problem can be solved exactly using a dynamic programming
technique. Its complexity grows exponentially with max;#N;, so it is
only efficient when the partitions are small. To avoid this problem, a
smaller subset of partial solutions could be retained as a heuristic.

Another optimization is possible by reassigning the transistors of a
subset to rows. If the pins of two transistors connect to the same
signal and if they use the same layer, they are allowed to overlap.
This means that the lower bound vy as defined in the previous section
is not always completely valid for estimating the width of a partition
of transistors. Therefore a left edge algorithm that allows such
terminals to overlap, can sometimes save a row.

5. MASK GENERATION

The program uses a small library of standard transistors that have
parameters for the length and width of the transistor, parameters for
its pin positions, and for an optional diffusion implant. For a
particular design, the parameters are substituted using a macro
processor. These transistors contain most of the technology
dependent information. The library can be easily designed using an
interactive layout editor. A preprocessor converis the layout
description to a parameterized description.

ox = my
Zi s inreee— R e

7777/

Figure 4. Some models from the nMOS library

The mask generator does a ‘smart’ compaction since it not only
compacts, but also tries different geometries for each transistor. For
each transistor a number of options are generated that differ in shape.
From these options, one is picked that fits best. The library can be
expanded to inctude more different options. This will give the mask
generator more freedom to find a good solution.

The mask generator works from the bottom to the top while it places
the transistors one by one. During the compaction two contours, one
for polysilicon and one for diffusion, are maintained to indicate the
occupied area. Pins are allowed to overlap, if they are connected to
the same signal and use the same layer. Therefore the diffusion pins
only occupy area in the polysilicon contour, and polysilicon pins
only occupy area in the diffusion contour. A transistor is selected
with the top of the contour and the area increase as criteria. Also the
mirror images of each option are tried. Of course the selections of
the transistors are mutually dependent, but no decisions are traced
back.

6. EXPERIMENTAL RESULTS

The folding must be able to control the aspect ratio accurately.
Within a large range, this aspect ratio should not influence the area
of the module very much. Three layouts for a logic circuit were
generated with different aspect ratios. In this experiment all
terminals were assigned to the top of the layout.

Figure 5. Three layouts for benchmark circuit *five’

In fig.6 such results for ciruit ‘cnmt4’ are shown in a graph. The
drawn line indicates the resultant aspect ratio. It has an almost linear
relationship with the desired aspect ratio. The dashed line indicates
area, and remains more or less constant in the middle range. Large
deformation costs extra, but may be worth while, depending on the
environment of the module.

In this experiment signal nets with many terminals were cut into
several nets before the folding using the mincut algorithm of [4].
These nets were connected by horizontal polysilicon strips. The
number of mincut partitions depended on the desired aspect ratio: a
wider module needs to more cuts. This allowed us to create much
wider modules.



2 L3500
34 L3000
2
- 2500 ,
csuling 2000
aspect ratio
L1500
0.5
0.33 - 1000
L 500
02

T 1 T T TraT
02 03305 1 2 3456
Desired aspect ratio

Figure 6. The aspect ratio and area versus desired aspect ratio

A number of experiments were done to compare this layout style
with other automatic layout systems. All systems designed for the
same nMOS process, with the same design rules. We compared the
results to the results of a conventional gate matrix generator and a
standard cell place and route system. The standard cells were
automatically generated linear transistor arrays. Some of the net lists
were extracted from layouts produced by the standard cell system.
The area of the minimum enclosing box is shown in the table.
Compared with the standard cell system the area was 34%-63%
smaller. The comparison with a gate matrix implementation showed
an 27%-56% improvement.

Inspecting the layouts shows that the new transistor matrix layouts
contain no empty areas. The standard cell program suffers from
empty area in channels and of unbalanced columns. Also, the
positions of the transistors are not matched as precisely as in the
folding. The gate matrix suffers from its grid based compaction.
Both old methods exhibit wire congestion in the center of the layout
that pushes layout elements apart over the entire width or length of
the module. Some of these problems may be fixed, but even then it
seems unlikely that the results can be matched.

comparison of layout methods
example area of box

name nr of 2 dim gate standard

Xtors folding matrix cell
hel84 12 0.043 0.072 -
data 24 0.088 0.166 -
adc 42 0.175 0411 0472
mp5 46 0.176 0.436 0.465
four 68 0.38 0.52 0.58
cntd 96 0.57 1.35 -
loc 130 097 - 2.13
five 177 1.33 2.99 2.29
six 332 3.85 - 6.99

7. CONCLUSIONS

The transistor matrices can be parameterized with respect to all
major layout parameters. It is shown that the shape and the pin
positions can be controlled accurately, while the area remains more
or less constant. To allow sufficient flexibility, it was necessary to
split nets with many terminals into several strips. The program is
interfaced 1o an automatic floor planning system. Using this system,
the shape and pin positions can be determined automatically.

Compared to conventional methods of automatic module generation
a drastic improvement in area usage is demonstrated. This
improvement was partiaily due to improved folding which fills the
enclosing rectangle denser, and partially due to the simple and
efficient compaction allowed by this method.

Stepwise refinement is applied in three different ways: The
generator adapts the module to a global floor plan. Secondly, the
module generator uses an elegant hierarchical divide and conquer
‘algorithm to gradually refine the two dimensional folding. Finally,
the transistor layouts are adapted to the wire plan designed by the
folding.

For handling CMOS circuits, the matrix could be split into several n
and p regions. The objective function of the folding should use
separate density functions for n and o transistors. An extra layer of
metal could easily be used by the cross connection strips.

8. ACKNOWLEDGEMENTS

This work was initialized by Jos van Eijndhoven while at IBM’s TJ Watson
Research Center. It was supported by the EEC under Esprit project nr. 991,
and by the Foundation FOM under project nr. EEL.31.0417. The authors
wish to thank Paul van Teeffelen for implementing the folding algorithm,
and Mark Bartholomeus and Theo Deckers for their helpful comments and
discussions.

REFERENCES

[1] M. Busstein, S.J. Hong, R. Pelavin: "Hierarchical VLSI Layout:
Simultaneous Placement and Wiring of Gate Arrays”, Proc. IFIP
Int. Conf. on Very Large Scale Integration, Trondheim, 16-19 Aug.
1983, F. Ancean and EJ. Aas (eds.), pp. 45-60.

[2] G. De Micheli: "Muitiple Constrained Folding of Programmable
Logic Arrays: Theory and Applications”, IEEE Trans. on Computer
Aided Design, Vol. CAD-2, No. 3, July 1983, pp. 151-167, errata in
Vol. CAD-3, No. 3, July 1984, p. 256.

[3] S. Devadas and AR. Newton: "Genie: A Generalized Array
Optimizer for VLSI Synthesis", Proc. 23rd Design Automation
Conf., Las Vegas, June 29 - July 2 1986, pp. 631-637.

[4] C.M. Fiduccia and R.M. Mattheyses: "A Linear Time Heuristic for
Improving Network Partitions”, Proc. 19th Design Automation
Conf., Las Vegas, 1982, pp. 175-181.

[S] T.Kashiwabara and T. Fujisawa: "NP-Completeness of the problem
of finding a minimum clique number interval graph containing a
given graph as a subgraph”, Proc. 1979 Int. Symp. on Circuits and
Systems, 1979, pp. 657-660.

[6] ©O. Wing, S. Huang, R. Wang: "Gate Matrix Layout”, IEEE Trans.
Computer Aided Design, Vol. CAD-4, No. 3, July 1985, pp. 220-
231,

{71 LPPP. van Ginneken and RHJM. Otten: "Stepwise Layout
Refinement", Proc. Int. Conf. on Computer Design, Port Chester
NY, Oct. 8-11 1984, pp. 30-36.

[8] N. Deo, M.S. Krishnamoorty, M.A. Langston: "Exact and
Approximate Solutions for the Gate Matrix Layout Problem", IEEE
Trans. Computer Aided Design, Vol. CAD-6, 1987, pp. 79-84.

91 R.HIJIM. Otten: "Efficient Floorplan Optimization", Proc. Int. Conf.
on Computer Design, Port Chester NY, Oct. 31 - Nov. 3 1983, pp.
499-503. ]

{101 L.PPP. van Ginneken, J.TJ. van Eijndhoven, PR.M. van
Teeffelen, T.J. Deckers: "Soft Macro Cell Generation by Two
Dimensional Folding", Proc. Int. Symp. on Circuits And Systems,
Helsinki, Finland, June 1988, pp. 727-730.

[11] D.F. Wong and C.L. Liu: "Array Optimization for VLSI Synthesis",
Proc. 24th Design Automation Conf., Miami Beach FL, June 1987,
pp. 537-543.

[12] C. Lursinsap and D. Gajski: "Cell Compilation with Constraints”,
Proc. 21th Design Automation Conf., Albuquerqus, June 1984, pp.
103-108.



